Skip to main content
Log in

Improvement of transconductance and cut-off frequency in \(\hbox {In}_{0.1}\hbox {Ga}_{0.9}\hbox {N}\) back-barrier-based double-channel Al\(_{0.3}\)Ga\(_{0.7}\)N / GaN high electron mobility transistor by enhancing the drain source contact length ratio

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An aluminium gallium nitride / gallium nitride (\(\hbox {Al}_{0.3}\hbox {Ga}_{0.7}\hbox {N}/\hbox {GaN}\)) high electron mobility transistor (HEMT) is designed at a gate length (\(L_\mathrm{G}\)) of \(0.1~\mu \hbox {m}\), drain-to-source spacing (\(L_\mathrm{SD}\)) of \(3~\mu \hbox {m}\) and drain length to source length ratio (\(L_\mathrm{D}\):\(L_\mathrm{S}\)) of 1. The HEMT is investigated by considering four different heterostructures, namely single channel, single channel with back-barrier, double channel and double channel with back-barrier. A two-dimensional electron gas (2DEG) is formed at the interface of AlGaN / GaN HEMT (DC HEMT). The physical importance of indium gallium nitride (InGaN) as back-barrier is to increase carrier confinement by raising the conduction band of GaN buffer. The double-channel HEMT (DC HEMT) with back-barrier shows the highest current drive. There is an improvement of 3.16% in drain current and an improvement of 4.58% in cut-off frequency at a gate-to-source voltage of \(-\,0.5\) V for the DC HEMT with back-barrier compared to the DC HEMT without back-barrier. For further improvement in transconductance and cut-off frequency, the structure of DC HEMT with back-barrier is modified by increasing the drain contact length and decreasing the source contact length, that is \(L_\mathrm{D}\):\(L_\mathrm{S} = 3\), keeping the drain-to-source spacing unchanged, i.e. \(L_\mathrm{SD}=3~\mu \hbox {m}\). There is 32.55% improvement in transconductance and 14.03% improvement in cut-off frequency at a gate-to-source voltage of \(-\,0.5\) V for the DC HEMT with back-barrier at \(L_\mathrm{D}{:}L_\mathrm{S} = 3\) compared to the DC HEMT with back-barrier at \(L_\mathrm{D}\):\(L_\mathrm{S} = 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M Kameche and N V Drozdovski, Microwave J. 48(5), 164 (2005)

    Google Scholar 

  2. H Arabshahi, Braz. J. Phys. 39(1), 35 (2009)

    Article  ADS  Google Scholar 

  3. S H Park and S L Chuang, Phys. Rev. B 59(7), 4725 (1999)

    Article  ADS  Google Scholar 

  4. H Morkoc, Electronic and optical processes in nitrides  (Wiley, 2009) Vol. 2

  5. O Ambacher et alJ. Appl. Phys. 85(6), 4725 (1999)

    Article  Google Scholar 

  6. R Quay, Gallium nitride electronics (Springer Science and Business Media, 2008) Vol. 96

  7. J Xie et alAppl. Phys. Lett. 91(13), 132116 (2007)

    Article  ADS  Google Scholar 

  8. R S Pengelly et alIEEE Trans. Microwave Theory Tech. 60(6), 1764 (2012)

    Article  ADS  Google Scholar 

  9. T Palacios et alIEEE Electron Device Lett. 27(1), 13 (2006)

    Article  ADS  Google Scholar 

  10. I P Smorchkova et alIEEE Trans. Microwave Theory Tech. 51(2), 665 (2003)

    Article  ADS  Google Scholar 

  11. S Nakamura and T Mukai, Jpn. J. Appl. Phys. 31(10B), L1457 (1992)

    Article  ADS  Google Scholar 

  12. G Simin et alJpn. J. Appl. Phys. 40(11A), L1142 (2001)

    Article  ADS  Google Scholar 

  13. T Palacios et alPhys. Status Solidi A 203(7), 1845 (2006)

    Article  ADS  Google Scholar 

  14. C Nguyen, N X Nguyen and D E Grider, Electron. Lett. 35(16), 1380 (1999)

    Article  ADS  Google Scholar 

  15. I Daumiller, D Theron, C Gaquière, A Vescan, R Dietrich, A Wieszt, H Leier, R Ventury, U K Mishra, I P Smorchkova, S Keller, N X Nguyen, C Nguyen and E Kohn, IEEE Electron Device Lett. 22(2), 62 (2001)

    Article  ADS  Google Scholar 

  16. R Chu et alIEEE Trans. Electron Devices 52(4), 438 (2005)

    Article  ADS  Google Scholar 

  17. A Kamath et alIEEE Electron Device Lett. 33(12), 1690 (2012)

    Article  ADS  Google Scholar 

  18. M L Schuette et alIEEE Electron Device Lett. 34(6), 741 (2013)

    Article  ADS  Google Scholar 

  19. J W P Hsu et alAppl. Phys. Lett. 81(1), 79 (2002)

    Article  ADS  Google Scholar 

  20. M Asif Khan et alAppl. Phys. Lett. 76(25), 3807 (2000)

  21. W Lu, V Kumar, R Schwindt, E Piner and I Adesida, Solid State Electron. 46(9), 1441 (2002)

    Article  ADS  Google Scholar 

  22. O Ambacher et alJ. Phys.: Condens. Matter 14(13), 3399 (2002)

    ADS  Google Scholar 

  23. J P Ibbetson, P T Fini, K D Ness, S P DenBaars, J S Speck and U K Mishra, Appl. Phys. Lett. 77(2), 250 (2000)

    Article  ADS  Google Scholar 

  24. G Sabui et alAIP Adv. 6(5), 055006 (2016)

    Article  ADS  Google Scholar 

  25. I Khalil, E Bahat-Treidel, F Schnieder and J Wurfl, IEEE Trans. Electron Devices 56(3), 361 (2009)

    Article  ADS  Google Scholar 

  26. W Xin-Hua et alChin. Phys. B 19(9), 097302 (2010)

    Article  ADS  Google Scholar 

  27. G H Jessenet et alIEEE Trans. Electron Devices54(10), 2589 (2007)

    Article  ADS  Google Scholar 

  28. G Longobardi et al, International Semiconductor Conference (CAS 2012) (Sinaia, Romania, 2012) Vol. 2

  29. A G Gudkov et alProceedings of the Scientific-Practical ConferenceResearch and Development 2016” (Springer, 2018)

Download references

Acknowledgements

The authors would like to express their special thanks to School of Electronics Engineering, Kalinga Institute of Technology, Bhubaneswar, India for giving them the necessary laboratory facilities to perform their research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, R., Dutta, P. Improvement of transconductance and cut-off frequency in \(\hbox {In}_{0.1}\hbox {Ga}_{0.9}\hbox {N}\) back-barrier-based double-channel Al\(_{0.3}\)Ga\(_{0.7}\)N / GaN high electron mobility transistor by enhancing the drain source contact length ratio. Pramana - J Phys 94, 5 (2020). https://doi.org/10.1007/s12043-019-1866-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1866-4

Keywords

PACS No

Navigation