Skip to main content
Log in

Quarkonia at finite temperature in relativistic heavy-ion collisions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. T Matsui and H Satz, Phys. Lett. B 178, 416 (1986)

  2. F Karsch, M T Mehr, and H Satz, Z. Phys. C 37, 617 (1988)

    Article  ADS  Google Scholar 

  3. S Digal, P Petreczky, and H Satz, Phys. Rev. D 64, 094015 (2001) [3a] Throughout this report, we shall be discussing nucleus–nucleus collisions, with a given energy per nucleon. In such cases, the energy will be written as xxx A GeV, where xxx GeV is the energy per nucleon and A is the mass number

    Article  ADS  Google Scholar 

  4. NA50 Collaboration: M C Abreu et al, Phys. Lett. B 477, 28 (2000)

    Article  Google Scholar 

  5. M Le Bellac, Thermal field theory (Cambridge University Press, 1996)

  6. O Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013); P Petreczky, J. Phys. G 39, 093002 (2012)

  7. S Datta, F Karsch, P Petreczky and I Wetzorke, Nucl. Phys. Proc. Suppl. 119, 487 (2003); Phys. Rev. D 69, 094507 (2004)

  8. K Nomura, O Miyamura, T Umeda and H Matsufuru, Nucl. Phys. Proc. Suppl. 119, 496 (2003) T Umeda, H Matsufuru and K Nomura, Eur. Phys. J. C39S1, 9 (2005)

  9. M Asakawa and T Hatsuda, Phys. Rev. Lett. 92, 012001 (2004)

    Article  ADS  Google Scholar 

  10. M Jarrell and J E Gubernatis, Phys. Rep. 269, 133 (1996) M Asakawa and T Hatsuda, Prog. Part. Nucl. Phys. 46, 459 (2001)

  11. R K Bryan, Eur. Biophys. J. 18, 165 (1990)

    Article  MathSciNet  Google Scholar 

  12. W Press, S Teukolsky, W Vetterling, and B Flannery, Numerical recipes (Cambridge University Press, 1989)

  13. A Jakovac, P Petreczky, K Petrov, and A Velytsky, Phys. Rev. D 75, 014506 (2007)

    Article  ADS  Google Scholar 

  14. G Aarts et al, Phys. Rev. D 76, 094513 (2007) M Oktay and J-I Skullerud, arXiv:1005.1209

  15. S Borsanyi et al, J. High Energy Phys. 1404, 132 (2014)

  16. T Umeda, Phys. Rev. D 75, 094502 (2007)

    Article  ADS  Google Scholar 

  17. S Datta and P Petreczky, J. Phys. G 35, 104114 (2008) P Petreczky, Eur. Phys. J. C 62, 85 (2009)

  18. A Mocsy and P Petreczky, Eur. Phys. J. ST 155, 101 (2008); Phys. Rev. Lett. 99, 211602 (2007)

  19. H T Ding et al, Phys. Rev. D 86, 014509 (2012)

    Article  ADS  Google Scholar 

  20. G Aarts et al, J. High Energy Phys. 1111, 103 (2011)

    Article  ADS  Google Scholar 

  21. G Aarts et al, J. High Energy Phys. 1312, 064 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. G P Lepage et al, Phys. Rev. D 46, 4052 (1992)

    Article  ADS  Google Scholar 

  23. S Datta, A Jakovac, F Karsch, and P Petreczky, AIP Conf. Proc. 842, 35 (2006)

    Article  ADS  Google Scholar 

  24. N Brambilla, M Escobedo, J Ghiglieri, J Soto, and A Vairo, J. High Energy Phys. 1009, 038 (2010)

    Article  ADS  Google Scholar 

  25. S Kim, P Petreczky, and A Rothkopf, PoS Lattice 2013, 169 (2014)

  26. L McLerran and B Svetitsky, Phys. Rev. D 24, 450 (1981)

    Article  ADS  Google Scholar 

  27. S Nadkarni, Phys. Rev. D 34, 3904 (1986)

    Article  ADS  Google Scholar 

  28. O Kaczmarek, F Karsch, P Petreczky and F Zantow, Phys. Lett. B 543, 41 (2002) O Kaczmarek and F Zantow, Phys. Rev. D 71, 114510 (2005)

  29. M Laine, O Philipsen, P Romatschke, and M Tassler, J. High Energy Phys. 0703, 054 (2007)

    Article  ADS  Google Scholar 

  30. N Brambilla, J Ghiglieri, A Vairo, and P Petreczky, Phys. Rev. D 78, 014017 (2008)

    Article  ADS  Google Scholar 

  31. A Beraudo, J -P Blaizot, and C Ratti, Nucl. Phys. A 806, 312 (2008)

    Article  ADS  Google Scholar 

  32. For a review, see N Brambilla, A Pineda, J Soto and A Vairo, Rev. Mod. Phys. 77, 1423 (2005)

  33. R D Pisarski, Phys. Rev. Lett. 63, 1129 (1989)

    Article  ADS  Google Scholar 

  34. N Brambilla, M Escobedo, J Ghiglieri, and A Vairo, J. High Energy Phys. 1112, 116 (2011)

    Article  ADS  Google Scholar 

  35. C Young and K Dusling, Phys. Rev. C 87, 065206 (2013) N Borghini and C Gombeaud, Eur. Phys. J. C 72, 2000 (2012) Y Akamatsu and A Rothkopf, Phys. Rev. D 85, 105011 (2012)

  36. Y Akamatsu, Phys. Rev. D 87, 045016 (2013)

    Article  ADS  Google Scholar 

  37. Y Burnier and A Rothkopf, Phys. Rev. D 87, 114019 (2013)

    Article  ADS  Google Scholar 

  38. Y Burnier and A Rothkopf, Phys. Rev. Lett. 111, 182003 (2013)

    Article  ADS  Google Scholar 

  39. Y Burnier, M Laine, and M Vepsalainen, J. High Energy Phys 0801, 043 (2008)

    Article  ADS  Google Scholar 

  40. P Petreczky, C Miao, and A Mocsy, Nucl. Phys. A 855, 125 (2011)

    Article  ADS  Google Scholar 

  41. P Braun-Munzinger and J Stachel, Phys. Lett. B 490, 196 (2000) R L Thews, M Schroedter and J Rafelski, Phys. Rev. C 63, 054905 (2001)

  42. A Andronic, P Braun-Munziger, K Redlich, and J Stachel, Nucl. Phys. A 789, 334 (2007)

    Article  ADS  Google Scholar 

  43. C Young and E Shuryak, Phys. Rev. C 79, 034907 (2009)

    Article  ADS  Google Scholar 

  44. G D Moore and D Teaney, Phys. Rev. C 71, 064904 (2005)

    Article  ADS  Google Scholar 

  45. PHENIX Collaboration: A Adare et al, Phys. Rev. C 84, 044905 (2011)

    Article  Google Scholar 

  46. A Francis, O Kaczmarek, M Laine and J Langelage, PoS Lattice 2011, 202 (2011) D Banerjee, S Datta, R Gavai and P Majumdar, Phys. Rev. D 85, 014510 (2012)

  47. L Grandchamp and R Rapp, Nucl. Phys. A 715, 545 (2003)

    Article  ADS  Google Scholar 

  48. L Yan, P Zhuang, and N Xu, Phys. Rev. Lett. 97, 232301 (2006)

    Article  ADS  Google Scholar 

  49. ALICE Collaboration: E Abbas et al, Phys. Rev. Lett. 111, 162301 (2013)

  50. X Zhao, A Emerick, and R Rapp, Nucl. Phys. A 904–905, 611c (2013)

    Article  Google Scholar 

  51. S Gupta and R Sharma, Phys. Rev. C 89, 057901 (2014)

  52. See K J Eskola, H Paukkunena and C A Salgado, J. High Energy Phys. 0904, 065 (2009), for a recent estimate of the nuclear distribution functions

  53. Quarkonium Working Group: N Brambilla et al, Heavy quarkonium physics, CERN Report (hep-ph/0412158)

  54. R Gavai et al, Int. J. Mod. Phys. A 10, 3043 (1995)

    Article  ADS  Google Scholar 

  55. G T Bodwin, E Braaten, and G P Lepage, Phys. Rev. D 51, 1125 (1995)

    Article  ADS  Google Scholar 

  56. D Kharzeev and H Satz, Phys. Lett. B 334, 155 (1994) X Xu, D Kharzeev, H Satz and X Wang, Phys. Rev. C 53, 3051 (1996)

  57. R Sharma and I Vitev, Phys. Rev. C 87, 044905 (2013)

    Article  ADS  Google Scholar 

  58. G Bhanot and M Peskin, Nucl. Phys. B 156, 391 (1979)

    Article  ADS  Google Scholar 

  59. M Strickland and D Bazow, Nucl. Phys. A 879, 25 (2012)

    Article  ADS  Google Scholar 

  60. M Margotta et al, Phys. Rev. D 83, 105019 (2011)

    Article  ADS  Google Scholar 

  61. F Riek and R Rapp, New J. Phys. 13, 045007 (2011)

    Article  ADS  Google Scholar 

  62. M Mannarelli and R Rapp, Phys. Rev. C 72, 064905 (2005) D Cabrera and R Rapp, Phys. Rev. D 76, 114506 (2007)

  63. O Kaczmarek, F Karsch, P Petreczky and F Zantow, Nucl. Phys. Proc. Suppl. 129, 560 (2004) O Kaczmarek and F Zantow, Eur. Phys. J. C 43, 59 (2005)

  64. CDF Collaboration: D Acosta et al, Phys. Rev. D 71, 032001 (2005)

    Article  ADS  Google Scholar 

  65. CMS Collaboration: S Chatrchyan et al, J. High Energy Phys. 05, 063 (2012)

    Article  ADS  Google Scholar 

  66. P Faccioli, C Lourenco, J Seixas and H Woehri, J. High Energy Phys. 0810, 004 (2008) CDF Collaboration: F Abe et al, Phys. Rev. Lett. 79, 578 (2003)

  67. T Affolder et al, Phys. Rev. Lett. 84, 2094 (2000)

    Article  ADS  Google Scholar 

  68. D Das, Conf. Proc. 57, 37–44 (2012) (Proceedings of the DAE Symposium on Nuclear Physics, 2012, arXiv:1212.2704) A Rossi, EPJ Web Conf. 60, 03003 (2013) (Proceedings of the LHCP Conference, arXiv:1308.2973)

  69. I Tserruya, Proceedings of the New Trends in High Energy Physics; arXiv:1311.4456

  70. NA50 Collaboration: B Allessandro et al, Phys. Lett. B 553, 167 (2003); Eur. Phys. J. C 33, 31 (2004)

  71. F Karsch, D Kharzeev, and H Satz, Phys. Lett. B 637, 76 (2006)

    Article  ADS  Google Scholar 

  72. X Zhao and R Rapp, Phys. Lett. B 664, 253 (2008)

    Article  ADS  Google Scholar 

  73. PHENIX Collaboration: A Adare et al, Phys. Rev. Lett. 98, 232301 (2007)

    Article  Google Scholar 

  74. PHENIX Collaboration: A Adare et al, Phys. Rev. C 84, 054912 (2011)

    Article  Google Scholar 

  75. ALICE Collaboration: B Abelev et al, Phys. Rev. Lett. 109, 072301 (2012)

    Article  ADS  Google Scholar 

  76. X Zhao and R Rapp, Nucl. Phys. A 859, 114 (2011)

    Article  ADS  Google Scholar 

  77. ALICE Collaboration: B Abelev et al, J. High Energy Phys. 1402, 073 (2014) L Manceau, EPJ Web Conf. 60, 13002 (2013), Proceedings of the LHCP Conference; arXiv:1307.3098

  78. K Sridhar and H Satz, Phys. Rev. D 50, 3557 (1994)

    Article  ADS  Google Scholar 

  79. H Satz, Adv. High Energy Phys. 2013, 242918 (2013)

    Article  Google Scholar 

  80. S Chatrchyan et al, Phys. Rev. Lett. 109, 222301 (2012)

    Article  ADS  Google Scholar 

  81. S Datta et al, in: Proceedings of the Strong and Electroweak Matter 2004 (Helsinki, Finland), arXiv:hep-lat/0409107. G Aarts et al, Nucl. Phys. A 785, 1c (2007), Proceedings of the Strong and Electroweak Matter 2006 (Brookhaven, USA) S Kim et al, PoS Lattice 2012, 086 (2012)

Download references

Acknowledgements

The author would like to thank Mikko Laine and Jon-Ivar Skullerud for providing him with data related to figures 2 and 3. The first draft of this article was completed during WHEPP-13. The author also acknowledges discussions with the participants of the meeting, in particular with D Das, S Gupta, R Gavai, R Sharma, P Shukla and K Sridhar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAUMEN DATTA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DATTA, S. Quarkonia at finite temperature in relativistic heavy-ion collisions. Pramana - J Phys 84, 881–899 (2015). https://doi.org/10.1007/s12043-015-0975-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0975-y

Keywords

PACS Nos

Navigation