Skip to main content
Log in

Delay or anticipatory synchronization in one-way coupled systems using variable delay with reset

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present a mechanism for the synchronization of one-way coupled nonlinear systems in which the coupling uses a variable delay, that is reset at finite intervals. Here the delay varies in the same way as the system in time and so the coupling function remains constant for the reset interval at the end of which it is reset to the value at that time. This leads to a novel and discrete error dynamics and the resulting general stability analysis is applicable to chaotic or hyperchaotic systems. We apply this method to standard chaotic systems and hyperchaotic time delay systems. The results of the detailed numerical analysis agree with the results from stability analysis in both cases. This method has the advantage that it is cost-effective since information from the driving system is needed only at intervals of reset. Further, in the context of time delay systems, optimization among the different time-scales depending upon the application is possible due to the flexibility among the four different time-scales in our method, viz. delay in the driving system, anticipation in the response system, system delay time and reset time. We suggest a bi-channel scheme for implementing this method in communication field with enhanced security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Boccaletti, J Kurths, G Osipov, D L Valladares and C S Zhou, Phys. Rep. 366, 1 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  2. N J Corron, J N Blakely and S D Pethel, Chaos 15, 023110 (2005)

    Article  ADS  Google Scholar 

  3. D V Senthilkumar and M Lakshmanan, Phys. Rev. E71, 016211 (2005)

    ADS  MATH  Google Scholar 

  4. K Pyragas, Phys. Rev. E58, 3067 (1998)

    ADS  Google Scholar 

  5. S Zhou, H Li and Z Wu, Phys. Rev. E75, 037203 (2007)

    ADS  Google Scholar 

  6. M Y Choi, H J Kim and D Kim, Phys. Rev. E61, 371 (2000)

    ADS  Google Scholar 

  7. M J Bunner and W Just, Phys. Rev. E58, R4072 (1998)

    ADS  Google Scholar 

  8. A Gjurchinovski and V Urumov, Phys. Rev. E81, 016209 (2010)

    ADS  Google Scholar 

  9. M Chen and J Kurths, Phys. Rev. E76, 036212 (2007)

    MathSciNet  ADS  Google Scholar 

  10. D Ghosh, S Banerjee and A Roy Chowdhury, Euro. Phys. Lett. 80, 30006 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. D V Senthilkumar and M Lakshmanan, Chaos 17, 013112 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. R Mainieri and J Rehacek, Phys. Rev. Lett. 82, 3042 (1999)

    Article  ADS  Google Scholar 

  13. D Xu, Phys. Rev. E63, 27201 (2001)

    ADS  Google Scholar 

  14. G Wen and D Xu, Chaos, Solitons and Fractals 26, 71 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. G H Li, Chaos, Solitons and Fractals 32, 1454 (2007)

    Article  ADS  MATH  Google Scholar 

  16. W Yang and J Sung, Phys. Lett. A372, 5402 (2008)

    ADS  Google Scholar 

  17. H Du, Q Zeng and C Wong, Chaos, Solitons and Fractals 42, 2399 (2009)

    Article  ADS  MATH  Google Scholar 

  18. A E Hramov and A A Koronovskii, Chaos 14, 603 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  19. A Argyris, D Syvridis, L Larger, V Annovazzi-Lodi, P Colet, I Fischer, J Garcia-Ojalvo, C R Mirasso, L Pesquera and K A Shore, Nature 438, 343 (2005)

    Article  ADS  Google Scholar 

  20. K Pyragas, Int. J. Bifurcat. Chaos 8, 1839 (1998)

    Google Scholar 

  21. J H Peng, E J Ding, M Ding and W Yang, Phys. Rev. Lett. 76, 904 (1996)

    Article  ADS  Google Scholar 

  22. V S Udaltsov, J P Goedgebuer, L Larger and W T Rhodes, Phys. Rev. Lett. 86, 1892 (2001)

    Article  ADS  Google Scholar 

  23. J P Goedgebuer, L Larger and H Porte, Phys. Rev. Lett. 80, 2249 (1998)

    Article  ADS  Google Scholar 

  24. L Yaowen, G Guangming, Z Hong, W Yinghai and G Liang, Phys. Rev. E62, 7898 (2000)

    ADS  Google Scholar 

  25. B P Bezruchko, A S Karavaev, V I Ponomarenko and M D Prokhorov, Phys. Rev. E64, 056216 (2001)

    ADS  Google Scholar 

  26. V I Ponomarenko and M D Prokhorov, Phys. Rev. E66, 026215 (2002)

    ADS  Google Scholar 

  27. C Zhou and C H Lai, Phys. Rev. E60, 320 (1999)

    ADS  Google Scholar 

  28. V S Udaltsov, Jean-Pierre Goedgebuer, L Larger, Jean-Baptiste Cuenot, P Levy and W T Rhodes, Phys. Lett. A308, 54 (2003)

    MathSciNet  ADS  Google Scholar 

  29. V S Udaltsov, L Larger, J P Goedgebuer, A Locquet and D S Citrin, J. Opt. Technol. 72, 373 (2005)

    Article  ADS  Google Scholar 

  30. Z Yan, L Yaowen and W Yinghai, Chin. J. Phys. 42, 323 (2004)

    Google Scholar 

  31. G Ambika and R E Amritkar, Phys. Rev. E79, 056206 (2009)

    MathSciNet  ADS  Google Scholar 

  32. V Resmi, G Ambika and R E Amritkar, Phys. Rev. E81, 046216 (2010)

    ADS  Google Scholar 

  33. L M Pecora and T L Carroll, Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  34. K Pyragas, Phys. Rev. E58, 3067 (1998)

    ADS  Google Scholar 

  35. S Sano, A Ushida, S Yoshimori and R Roy, Phys. Rev. E75, 016207 (2007)

    ADS  Google Scholar 

  36. T M Hoang, Int. J. Elec. Electron. Eng. 2, 240 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G AMBIKA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AMBIKA, G., Amritkar, R.E. Delay or anticipatory synchronization in one-way coupled systems using variable delay with reset. Pramana - J Phys 77, 891–904 (2011). https://doi.org/10.1007/s12043-011-0195-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0195-z

Keywords

PACS Nos

Navigation