Skip to main content
Log in

Quantum information paradox: Real or fictitious?

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

One of the outstanding puzzles of theoretical physics is whether quantum information indeed gets lost in the case of black hole (BH) evaporation or accretion. Let us recall that quantum mechanics (QM) demands an upper limit on the acceleration of a test particle. On the other hand, it is pointed out here that, if a Schwarzschild BH exists, the acceleration of the test particle would blow up at the event horizon in violation of QM. Thus the concept of an exact BH is in contradiction with QM and quantum gravity (QG). It is also reminded that the mass of a BH actually appears as an integration constant of Einstein equations. And it has been shown that the value of this integration constant is actually zero! Thus even classically, there cannot be finite mass BHs though zero mass BH is allowed. It has been further shown that during continued gravitational collapse, radiation emanating from the contracting object gets trapped within it by the runaway gravitational field. As a consequence, the contracting body attains a quasi-static state where outward trapped radiation pressure gets balanced by inward gravitational pull and the ideal classical BH state is never formed in a finite proper time. In other words, continued gravitational collapse results in an ‘eternally collapsing object’ which is a ball of hot plasma and which is asymptotically approaching the true BH state with M = 0 after radiating away its entire mass energy. And if we include QM, this contraction must halt at a radius suggested by the highest QM acceleration. In any case no event horizon (EH) is ever formed and in reality, there is no quantum information paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arun Pati, Euro. Phys. Lett. 18, 285 (1992)

    Article  ADS  Google Scholar 

  2. Arun Pati, Il Nuovo Cimento B107, 895 (1992)

    ADS  Google Scholar 

  3. E R Caianiello et al, Int. J. Mod. Phys. D3(2), 485 (1994)

    ADS  Google Scholar 

  4. A Mitra, Found. Phys. Lett. 15(5), 439 (2002)

    Article  MathSciNet  Google Scholar 

  5. G Horowitz, hep-th/9210119 (1992)

  6. A Strominger, Nucl. Phys. B451, 109 (1995), hep-th/954090

    MathSciNet  ADS  Google Scholar 

  7. V A Belinski, Phys. Lett. A354, 249 (2006), gr-qc/060713

    MathSciNet  ADS  Google Scholar 

  8. M Rabinowitz, astro-ph/0412101 (2004)

  9. A Mitra, Adv. Sp. Res. 38(12), 2917 (2006), astro-ph/0510162

    Article  ADS  Google Scholar 

  10. A Mitra, J. Math. Phys. 50(4), 0242502 (2009), arXiv:0904.4754

    Article  Google Scholar 

  11. A Mitra, physics/0504076 (2005)

  12. A Mitra, Proc. 11th Marcel Gross Conf. on General Relativity (World Scientific, Singapore, 2008) p. 2276

    Google Scholar 

  13. A Mitra, Found. Phys. Lett. 13(6), 543 (2000)

    Article  Google Scholar 

  14. A Mitra, astro-ph/0408323 (2004)

  15. A Mitra, gr-qc/0512006 (2005)

  16. D Leiter and S R Robertson, Found. Phys. Lett. 16, 143 (2003)

    Article  MathSciNet  Google Scholar 

  17. A Mitra, Mon. Not. R. Astron. Soc. Lett. 367, L66 (2006), gr-qc/061025

    Article  ADS  Google Scholar 

  18. A Mitra, Mon. Not. R. Astron. Soc. 369, 492 (2006), gr-qc/0603055

    Article  ADS  Google Scholar 

  19. A Mitra, Phys. Rev. D74(2), 02010 (2006), gr-qc/0606066

    Google Scholar 

  20. A Mitra, New Astronomy 12(2), 146 (2006), astro-ph/0608178

    Article  ADS  Google Scholar 

  21. A Mitra and N K Glendenning, eScholarship Repository, Lawrence Berkeley National Laboratory, University of California (2006) see, http://repositories.cdlib.org/lbnl/LBNL-59320.

  22. S Robertson and D Leiter, Astrophys. J. 565, 447 (2002)

    Article  ADS  Google Scholar 

  23. S Robertson and D Leiter, Astrophys. J. 569, L203 (2003)

    Article  ADS  Google Scholar 

  24. S Robertson and D Leiter, Mon. Not. R. Astron. Soc. 350, 1391 (2004)

    Article  ADS  Google Scholar 

  25. R Schild, D Leiter and S Robertson, Astronom. J. 132(1), 420 (2006)

    Article  ADS  Google Scholar 

  26. R Schild, D Leiter and S Robertson, Astronom. J. 135(3), 947 (2008)

    Article  ADS  Google Scholar 

  27. Arun Pati and S L Baurstein, Phys. Rev. Lett. 98(8), 080502 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhas Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, A. Quantum information paradox: Real or fictitious?. Pramana - J Phys 73, 615–622 (2009). https://doi.org/10.1007/s12043-009-0113-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0113-9

Keywords

PACS Nos

Navigation