Skip to main content
Log in

Transferability of Nikita and Sukkula retrotransposons in domestic goose (Anser anser domesticus) genome

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

This article aimed to detect the existence of barley-specific Nikita and Sukkula retrotransposons in domestic geese samples and to evaluate the evolutionary relationships between these and other transposons belonging to the family Anatidae. Inter-retrotransposon-amplified polymorphism-polymerase chain reaction (IRAP-PCR) method was performed for these retrotransposons movements in three diverse domestic goose populations (Chinese × Embden crossbred, Turkish White, and Turkish Multicolor). Polymorphism ratios were between 0 and 33% in all samples for Nikita and 0–73% in all samples for Sukkula. In addition, intrapopulation genetic polymorphism rates were also 0–15% in Chinese × Embden crossbred, 0–25% in Turkish White, 0–25% in Turkish Multicolor for Nikita; while 0–27% in Chinese × Embden, and 0–50% in Turkish Multicolor for Sukkula. There was no polymorphism for Sukkula among Turkish White samples. Moreover, the neighbour-joining method was used for phylogenetic tree construction using 38 sequences of different ducks, geese, and swans. In silico analyses supported the transitions of retrotransposons in the family Anatidae. It is concluded that transposon mobility among the phylogenetically distant species may lead to understanding evolutionary relationships. This report is one of the first studies investigating retrotransposon movements in domestic geese, revealing a new perspective on the goose genome regarding mobile genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arvas Y., Abed M., Zaki Q., Kocaçalışkan İ. and Haji E. 2021 The potential role of transposable elements as molecular markers. Paper presented at the IOP Conference Series: Earth and Environmental Science.

  • Backues K. A. 2015 Anseriformes. In: Fowler's zoo and wild animal medicine, Vol. 8, pp. 116–126. Elsevier, St. Louis.

  • Boz M. A., Oz F., Yamak U. S., Sarica M. and Cilavdaroglu E. 2019 The carcass traits, carcass nutrient composition, amino acid, fatty acid, and cholesterol contents of local Turkish goose varieties reared in an extensive production system. Poult. Sci. 98, 3067–3080.

    Article  CAS  PubMed  Google Scholar 

  • Cedar H. and Bergman Y. 2012 Programming of DNA methylation patterns. Annu. Rev. Biochem. 81, 97–117.

    Article  CAS  PubMed  Google Scholar 

  • Chen C., Wang X., Zong W., D’Alessandro E., Giosa D., Guo Y. et al. 2021 Genetic diversity and population structures in Chinese Miniature Pigs revealed by SINE retrotransposon insertion polymorphisms, a new type of genetic markers. Animals 11, 1136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Daxinger L. and Whitelaw E. 2012 Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Eo S. H., Bininda-Emonds O. R. P. and Carroll J. P. 2009 A phylogenetic supertree of the fowls (Galloanserae, Aves). Zool. Scr. 38, 465–481.

    Article  Google Scholar 

  • Etchegaray E., Naville M., Volff J.-N. and Haftek-Terreau Z. 2021 Transposable element-derived sequences in vertebrate development. Mob. DNA 12, 1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J. 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Galbraith J. D. 2021 The evolution and adaptive effects of transposable elements in birds and elapids. Ph.D. thesis. University of Adelaide, Adelaide.

  • Galbraith J. D., Kortschak R. D., Suh A. and Adelson D. L. 2021 Genome stability is in the eye of the beholder: CR1 retrotransposon activity varies significantly across avian diversity. Genome Biol. Evol. 13, evab2594.

    Article  Google Scholar 

  • Gao D., Chu Y., Xia H., Xu C., Heyduk K., Abernathy B. et al. 2018 Horizontal transfer of non-LTR retrotransposons from arthropods to flowering plants. Mol. Biol. Evol. 35, 354–364.

    Article  CAS  PubMed  Google Scholar 

  • Ivancevic A. M., Kortschak R. D., Bertozzi T. and Adelson D. L. 2018 Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol. 19, 1–13.

    Article  Google Scholar 

  • Jaccard P. 1908 Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270.

    Google Scholar 

  • Jannesar M., Seyedi S. M. and Botanga C. 2021 Targeted designing functional markers revealed the role of retrotransposon derived miRNAs as mobile epigenetic regulators in adaptation responses of pistachio. Sci. Rep. 11, 1–21.

    Article  Google Scholar 

  • John J. S., Cotter J.-P. and Quinn T. W. 2005 A recent chicken repeat 1 retrotransposition confirms the Coscoroba-Cape Barren goose clade. Mol. Phylogenet. Evol. 37, 83–90.

    Article  Google Scholar 

  • Kalendar R. and Schulman A. H. 2006 IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat. Protoc. 1, 2478–2484.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S., Stecher G., Li M., Knyaz C. and Tamura K. 2018 MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law J. A. and Jacobsen S. E. 2010 Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh F., Kalendar R., Lea V., Lee D., Donini P. and Schulman A. 2003 Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol. Genet. Genom. 269, 464–474.

    Article  CAS  Google Scholar 

  • Li Y., Gao G., Lin Y., Hu S., Luo Y., Wang G. et al. 2020 Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome. GigaScience 9, giaa114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X., Faridi N. and Casola C. 2016 An ancient transkingdom horizontal transfer of Penelope-like retroelements from arthropods to conifers. Genome Biol. Evol. 8, 1252–1266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T., Xing Y., Fan X., Chen Z., Zhao C., Liu L. et al. 2021 Fasting and overfeeding affect the expression of the immunity-or inflammation-related genes in the liver of poultry via endogenous retrovirus. Poult. Sci. 100, 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Lu L., Chen Y., Wang Z., Li X., Chen W., Tao Z. et al. 2015 The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biol. 16, 1–11.

    Article  Google Scholar 

  • Łukaszewicz E. 2010 Artificial insemination in geese. Worlds Poult. Sci. J. 66, 647–658.

    Article  Google Scholar 

  • Marczylo E. L., Amoako A. A., Konje J. C., Gant T. W. and Marczylo T. H. 2012 Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7, 432–439.

    Article  CAS  PubMed  Google Scholar 

  • Meng Y., Su W., Ma Y., Liu L., Gu X., Wu D. et al. 2021 Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 11, 1–12.

    Article  Google Scholar 

  • Mercan L., Bulbul C. E., Bilgi F. and Marakli S. 2022a Determination of plant-specific retrotransposons in chicken. Turkish J. Vet. Anim. 46, 67–73.

    CAS  Google Scholar 

  • Mercan L., Bulbul C. E. and Marakli S. 2022b Genetic diversity among queen bee, worker bees and larvae in terms of retrotransposon movements. Genet. Resour. Crop Evol. 69, 1671–1683.

    Article  CAS  Google Scholar 

  • Miller S., Dykes D. and Polesky H. 1988 A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NCBI 2022 Ovis aries Annotation Release 104. Retrieved from https://www.ncbi.nlm.nih.gov/assembly/GCF_016772045.1/ 24.02.2022.

  • Nei M. and Kumar S. 2000 Molecular evolution and phylogenetics, Oxford University Press.

    Book  Google Scholar 

  • Olsson C., Gunnarsson G. and Elmberg J. 2017 Field preference of Greylag geese Anser anser during the breeding season. Eur. J. Wildl. Res. 63, 28.

    Article  Google Scholar 

  • Saitou N. and Nei M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Shi X., Wang J., Zeng F. and Qiu X. 2006 Mitochondrial DNA cleavage patterns distinguish independent origin of Chinese domestic geese and western domestic geese. Biochem. Genet. 44, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Suh A., Witt C. C., Menger J., Sadanandan K. R., Podsiadlowski L., Gerth M. et al. 2016 Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nat. Commun. 7, 1–9.

    Article  Google Scholar 

  • Wang S., Diaby M., Puzakov M., Ullah N., Wang Y., Danley P. et al. 2021 Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol. Phylogenet. Evol. 161, 107143.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cİhat Erdem BÜlbÜl.

Additional information

Corresponding editor: Imroze Khan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercan, L., BÜlbÜl, C.E., Bİlgİ, F. et al. Transferability of Nikita and Sukkula retrotransposons in domestic goose (Anser anser domesticus) genome. J Genet 103, 6 (2024). https://doi.org/10.1007/s12041-023-01454-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01454-6

Keywords

Navigation