Skip to main content
Log in

Fitness differences due to allelic variation at Esterase-4 locus in Drosophila ananassae

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Esterases are known to play essential role in metabolism, reproductive physiology and behaviour of Drosophila. Esterases are highly polymorphic enzymes in Drosophila, but the polymorphism of these enzymes is not well studied in Drosophila ananassae. Recent studies on esterase polymorphism in D. ananassae revealed that Est-4 locus comprises Est-4 active and Est-4 null alleles depending on enzymatic activity. For the in vivo functional characterization of this locus, homozygous lines of genotypes Est-4 active and Est-4 null were derived from the flies collected from Gangtok, Sikkim, in 2006. Mating propensity, mating pattern, fecundity, fertility and productivity of female, life span and triglycerides level were investigated in the flies bearing either Est-4 active or Est-4 null genotypes. Results showed that mating occurred randomly with nonsignificant difference in mating propensity between Est-4 active and Est-4 null flies. However, a significant difference in fecundity and strong dependency between genotypes and the rate of fertility was found. The median values of progeny produced per female were 24 and 20 for Est-4 active and Est-4 null genotypes, respectively. The life span assay showed a significant difference in the survivorship between the two genotypes. Triglycerides level was higher in Esterase-4 active larval haemolymph as well as in mature flies’ homogenate than that of Esterase-4 null. Thus, Esterase-4 locus of D. ananassae has its role in fecundity, fertility and productivity of female, life span control and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aslund S.-E. and Rasmuson M. 1978 Mating behaviour as a fitness component involved in maintaining allozyme polymorphism in Drosophila melanogaster III. The amount of variation among allozyme genotypes in the Est-6 and Lap-A allozyme systems. Hereditas 89, 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Ayala F. J., Mourao C. A., Perez-Salas S., Richmond R. and Dobzhansky T. 1970 Enzyme variability in the Drosophila willistoni group I. Genetic differentiation among sibling species. Proc. Natl. Acad. Sci. USA 67, 225–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell G. and Koufopanou V. 1986 The cost of reproduction. Oxford Surv. Evol. Biol. 3, 83–131.

    Google Scholar 

  • Beller M., Riedel D., Jansch L., Dieterich G., Wehland J., Jackle H. et al. 2006 Characterization of the Drosophila lipid droplet subproteome. Mol. Cell Proteomics 5, 1082–1094.

    Article  CAS  PubMed  Google Scholar 

  • Birley A. J. and Beardmore J. A. 1977 Genetical composition, temperature, density and selection in an enzyme polymorphism. Heredity 39, 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Birner-Gruenberger R., Bickmeyer I., Lange J., Hehlert P., Hermetter A., Kollroser M. et al. 2012 Functional fat body proteomics and gene targeting reveal in vivo functions of Drosophila melanogaster \(\alpha \)-Esterase-7. Insect Biochem. Mol. Biol. 42, 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Campbell P. M., de Q Robin G. C., Court L. N., Court N., Dorrian S. J., Russell R. J. et al. 2003 Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melanogaster. Insect Mol. Biol. 12, 459–471.

  • Carvajal-Rodriguez A. and Rolan-Alvarez E. 2006 JMATING: a software for the analysis of sexual selection and sexual isolation effects from mating frequency data. BMC Evol. Biol. 6, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chertemps T., Francois A., Durand N., Rosell G., Dekker T., Lucas P. et al. 2012 A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila. BMC Biol. 10, 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintapalli V. R., Wang J. and Dow J. A. T. 2007 Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39, 715–720.

    Article  CAS  PubMed  Google Scholar 

  • Chippindale A. K., Leroi A. M., Kim S. B. and Rose M. R. 1993 Phenotypic plasticity and selection in Drosophila life history evolution. I. Nutrition and the cost of reproduction. J. Evol. Biol. 6, 171–193.

    Article  Google Scholar 

  • Coyne J. A., Elwyn S. and Rolan-Alvarez E. 2005 Impact of experimental design on drosophila sexual isolation studies: direct effects and comparison to field hybridization data. Evolution 59, 2588–2601.

    Article  PubMed  Google Scholar 

  • Dierick H. A. and Greenspan R. J. 2006 Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 38, 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Elens A. A. and Wattiaux J. M. 1964 Direct observations of sexual isolation. Dros. Inf. Serv. 39, 118–119.

    Google Scholar 

  • Ellis L. L. and Carney G. E. 2010 Mating alters gene expression patterns in Drosophila melanogaster male heads. BMC Genomics 11, 558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gems D., Sutton A. J., Sundermeyer M. L., Albert P. S., King K. V., Edgley M. L. et al. 1998 Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert D. G. and Richmond R. C. 1981 Studies of esterase 6 in Drosophila melanogaster. VI. Ejaculate competitive abilities of males having null or active alleles. Genetics 97, 85–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert D. G. and Richmond R. C. 1982 Esterase 6 in Drosophila melanogaster: reproductive function of active and null males at low temperature. Proc. Natl. Acad. Sci. USA 79, 2962–2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert D. G., Richmond R. C. and Sheehan K. B. 1981 Studies on esterase 6 in Drosophila melanogaster. V. Progeny production and sperm use in females inseminated by males having active or null alleles. Evolution 35, 21–37.

    CAS  PubMed  Google Scholar 

  • Hansen M., Flatt T. and Aguilaniu H. 2013 Reproduction, fat metabolism, and life span: what is the connection? Cell Metabol. 17, 10–19.

    Article  CAS  Google Scholar 

  • Harshman L. G. and Hoffmann A. A. 2000 Laboratory selection experiments using Drosophila: what do they really tell us? Trends Ecol. Evol. 15, 32–36.

    CAS  Google Scholar 

  • Healy M. J., Dumancic M. M. and Oakeshott J. G. 1991 Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochem. Genet. 29, 365–388.

    Article  CAS  PubMed  Google Scholar 

  • Judd E. T., Wessels F. J., Drewry M. D., Grove M., Wright K., Hahn D. A. et al. 2011 Ovariectomy in grasshoppers increases somatic storage, but proportional allocation of ingested nutrients to somatic tissues is unchanged. Aging Cell 10, 972–979.

    Article  CAS  PubMed  Google Scholar 

  • Kojima K. and Yarbrough K. M. 1967 Frequency dependent selection at the esterase 6 locus in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 57, 645–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorti K. and Singh A. K. 2013 Esterase-4 locus comprises active and null alleles in Drosophila ananassae. Dros. Inf. Serv. 96, 54–55.

  • Kumar S. and Singh A. K. 2014 Complete absence of linkage disequilibrium between enzyme loci in natural populations of Drosophila ananassae. Genetika 46, 227–234.

    Article  Google Scholar 

  • Langely C. H., Voelker R. A., Leigh-Brown A. J., Ohnishi S., Dickson B. and Montgomeri E. 1981 Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics 99, 151–156.

    Google Scholar 

  • Lewontin R. C. and Hubby J. L. 1966 A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay T. F. C., Roshina N. V., Leips J. W. and Pasyukova E. G. 2006 Complex genetic architecture of Drosophila longevity. In Handbook of the biology of aging (ed. E. J. Masaro and S. N. Austad), pp. 181–216. Elsevier Press, Burlington, USA.

    Google Scholar 

  • Nanda P. and Singh B. N. 2008 No effect of marking procedures and choice situations on the pattern of matings in Drosophila ananassae. Dros. Inf. Serv. 91, 10–13.

    Google Scholar 

  • Oakeshott J. G., van Papenrecht E. A., Boyce T. M., Healy M. J. and Russell R. J. 1993 Evolutionary genetics of Drosophila esterases. Genetica 90, 239–268.

    Article  CAS  PubMed  Google Scholar 

  • Paaby A. B. and Schmidt P. S. 2008 Functional significance of allelic variation at methuselah, an aging gene in Drosophila. PLoS One 3, e1987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paaby A. B. and Schmidt P. S. 2009 Dissecting the genetics of longevity in Drosophila melanogaster. Fly 3, 1–10.

    Article  Google Scholar 

  • Partridge L., Gems D. and Withers D. J. 2005 Sex and death: what is the connection? Cell 120, 461–472.

    Article  CAS  PubMed  Google Scholar 

  • Richmond R. C. and Senior A. 1981 Esterase 6 of Drosophila melanogaster: kinetics of transfer to females, decay in females and male recovery. J. Insect Physiol. 27, 849–853.

    Article  CAS  Google Scholar 

  • Saad M., Game A. Y., Healy M. J. and Oakeshott J. G. 1994 Associations of esterase 6 allozyme and activity variation with reproductive fitness in Drosophila melanogaster. Genetica 94, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Singh B. N. 2010 Drosophila ananassae: a good model species for genetical, behavioral and evolutionary studies. Indian J. Exp. Biol. 48, 333–345.

    PubMed  Google Scholar 

  • Singh B. N. 2013 Genetic polymorphisms in Drosophila. Curr. Sci. 105, 461–469.

    Google Scholar 

  • Som A. and Singh B. N. 1998 No effect of marking flies either by nail polish on scutellum or by wing clipping on mating success in Drosophila ananassae. Dros. Inf. Serv. 81, 202–203.

    Google Scholar 

  • Tatar M., Kopelman A., Epstein D., Tu M. P., Yin C. M. and Garofalo R. S. 2001 A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110.

  • Tweedie S., Ashburner M., Falls K., Leyland P., McQuilton P., Marygold S. et al. 2009 FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res. 37, D555–D559.

    Article  CAS  PubMed  Google Scholar 

  • Voelkar R. A., Langley C. H., Leigh-Brown A. J., Ohnishi S., Dickson B., Montgomery E. et al. 1980 Enzyme null alleles in natural populations of Drosophila melanogaster: frequencies in a North Carolina population. Proc. Natl. Acad. Sci. USA 77, 1091–1095.

    Article  Google Scholar 

  • Williams G. C. 1966 Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690.

    Article  Google Scholar 

  • Wright T. R. F. 1963 The genetics of an Esterase in Drosophila melanogaster. Genetics 48, 787–801.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KK is grateful to University Grant Commission, New Delhi, for providing the research fellowship. We are thankful to E. Rolan-Alvarez for helping us with JMATING software. We also thank the anonymous reviewers for their comments and suggestions on the original draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Singh.

Additional information

Corresponding editor: N. G. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorti, K., Singh, A.K. Fitness differences due to allelic variation at Esterase-4 locus in Drosophila ananassae . J Genet 96, 625–631 (2017). https://doi.org/10.1007/s12041-017-0814-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0814-7

Keywords

Navigation