Skip to main content

Advertisement

Log in

Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, are the prodominant causes of human blindness in the world; however, these diseases are difficult to treat. Currently, knowledge on the mechanisms of these diseases is still very limited and no radical drugs are available. Induced pluripotent stem (iPS) cells are an innovative technology that turns somatic cells into embryonic stem (ES)-like cells with pluripotent potential via the exogenous expression of several key genes. It can be used as an unlimited source for cell differentiation or tissue engineering, either of which is a promising therapy for human degenerative diseases. Induced pluripotent cells are both an unlimited source for retinal regeneration and an expectant tool for pharmaprojects and developmental or disease modelling. In this review, we try to summarize the advancement of iPS-based technologies and the potential utility for retinal degenerative diseases. We also discuss the challenges of using this technology in the retinology field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleman T. S., Duncan J. L., Bieber M. L., de Castro E., Marks D. A., Gardner L. M. et al. 2001 Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest. Ophthalmol. Vis. Sci. 42, 1873–1881.

    CAS  PubMed  Google Scholar 

  • Ali R. R., Sarra G. M., Stephens C., Alwis M. D., Bainbridge J. W., Munro P. M. et al. 2000 Restoration of photoreceptor ultra-structure and function in retinal degeneration slow mice by gene therapy. Nat. Genet. 25, 306–310.

    Article  CAS  PubMed  Google Scholar 

  • Amabile G. and Meissner A. 2009 Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol. Med. 15, 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Berson E. L., Rosner B., Sandberg M. A., Hayes K. C., Nicholson B. W., Weigel-DiFranco C. et al. 1993 A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch. Ophthalmol. 111, 761–772.

    CAS  PubMed  Google Scholar 

  • Daley G. Q., Lensch M. W., Jaenisch R., Meissner A., Plath K. and Yamanaka S. 2009 Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4, 200–201; author reply 202.

    Article  CAS  PubMed  Google Scholar 

  • Das T., del Cerro M., Jalali S., Rao V. S., Gullapalli V. K., Little C. et al. 1999 The transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study. Exp. Neurol. 157, 58–68.

    Article  CAS  PubMed  Google Scholar 

  • del Cerro M., Humayun M. S., Sadda S. R., Cao J., Hayashi N., Green W. R. et al. 2000 Histologic correlation of human neural retinal transplantation. Invest. Ophthalmol. Vis. Sci. 41, 3142–3148.

    PubMed  Google Scholar 

  • Dimos J. T., Rodolfa K. T., Niakan K. K., Weisenthal L. M., Mitsumoto H., Chung W. et al. 2008 Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  • Ezashi T., Telugu B. P., Alexenko A. P., Sachdev S., Sinha S. and Roberts R. M. 2009 Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl. Acad. Sci. USA 106, 10993–10998.

    Article  CAS  PubMed  Google Scholar 

  • Haim M. 1993 Retinitis pigmentosa: problems associated with genetic classification. Clin. Genet. 44, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Hartong D. T., Berson E. L. and Dryja T. P. 2006 Retinitis pigmentosa. Lancet 368, 1795–1809.

    Article  CAS  PubMed  Google Scholar 

  • Haruta M., Sasai Y., Kawasaki H., Amemiya K., Ooto S., Kitada M. et al. 2004 In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025.

    Article  PubMed  Google Scholar 

  • Hirami Y., Osakada F., Takahashi K., Okita K., Yamanaka S., Ikeda H. et al. 2009 Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 458, 126–131.

    Article  CAS  PubMed  Google Scholar 

  • Ho H. Y. and Li M. 2006 Potential application of embryonic stem cells in Parkinson’s disease: drug screening and cell therapy. Regen. Med. 1, 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman D. R., Locke K. G., Wheaton D. H., Fish G. E., Spencer R. and Birch D. G. 2004 A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. Am. J. Ophthalmol. 137, 704–718.

    CAS  PubMed  Google Scholar 

  • Huangfu D., Osafune K., Maehr R., Guo W., Eijkelenboom A., Chen S. et al. 2008 Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  • Humayun M. S., de Juan Jr E., del Cerro M., Dagnelie G., Radner W., Sadda S. R. et al. 2000 Human neural retinal transplantation. Invest. Ophthalmol. Vis. Sci. 41, 3100–3106.

    CAS  PubMed  Google Scholar 

  • Jagatha B., Divya M. S., Sanalkumar R., Indulekha C. L., Vidyanand S., Divya T. S. et al. 2009 In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem. Biophys. Res. Commun. 380, 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Jin Z. B., Gu F., Matsuda H., Yukawa N., Ma X. and Nao-i N. 2007 Somatic and gonadal mosaicism in X-linked retinitis pigmentosa. Am. J. Med. Genet. A 143A, 2544–2548.

    Article  CAS  PubMed  Google Scholar 

  • Jin Z. B., Mandai M., Yokota T., Higuchi K., Ohmori K., Ohtsuki F. et al. 2008 Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. J. Med. Genet. 45, 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen A., Junker N., Kaestel C. G., Liang Y., Wiencke A., la Cour M. et al. 2001 Superantigen presentation by human retinal pigment epithelial cells to T cells is dependent on CD2–CD58 and CD18–CD54 molecule interactions. Exp. Eye Res. 73, 723–733.

    Article  CAS  PubMed  Google Scholar 

  • Judson R. L., Babiarz J. E., Venere M. and Blelloch R. 2009 Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27, 459–461.

    Article  CAS  PubMed  Google Scholar 

  • Kaji K., Norrby K., Paca A., Mileikovsky M., Mohseni P. and Woltjen K. 2009 Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H., Suemori H., Mizuseki K., Watanabe K., Urano F., Ichinose H. et al. 2002 Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. USA 99, 1580–1585.

    Article  CAS  PubMed  Google Scholar 

  • Kim D., Kim C. H., Moon J. I., Chung Y. G., Chang M. Y., Han B. S. et al. 2009 Generation of human induced pluripotent stemcells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Kinouchi R., Takeda M., Yang L., Wilhelmsson U., Lundkvist A., Pekny M. et al. 2003 Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat. Neurosci. 6, 863–868.

    Article  CAS  PubMed  Google Scholar 

  • Kondo M., Sakai T., Komeima K., Kurimoto Y., Ueno S., Nishizawa Y. et al. 2009 Generation of a transgenic rabbit model of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 50, 1371–1377.

    Article  PubMed  Google Scholar 

  • Lamba D. A., Karl M. O., Ware C. B. and Reh T. A. 2006 Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 12769–12774.

    Article  CAS  PubMed  Google Scholar 

  • Lamba D. A., Gust J. and Reh T. A. 2009 Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crxdeficient mice. Cell Stem Cell 4, 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Li Z. Y., Wong F., Chang J. H., Possin D. E., Hao Y., Petters R. M. et al. 1998 Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 39, 808–819.

    CAS  PubMed  Google Scholar 

  • Liu H., Zhu F., Yong J., Zhang P., Hou P., Li H. et al. 2008 Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590.

    Article  CAS  PubMed  Google Scholar 

  • Lund R. D., Wang S., Klimanskaya I., Holmes T., Ramos-Kelsey R., Lu B. et al. 2006 Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8, 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Lyssiotis C. A., Foreman R. K., Staerk J., Garcia M., Mathur D., Markoulaki S. et al. 2009 Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl. Acad. Sci. USA 106, 8912–8917.

    Article  PubMed  Google Scholar 

  • Ma Z., Han L., Wang C., Dou H., Hu Y., Fing X. et al. 2009 Autologus transplantation of retinal pigment epithelium-Bruch’s membrane complex for hemorrhagic age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 50, 2975–2981.

    Article  PubMed  Google Scholar 

  • MacLaren R. E., Pearson R. A., MacNeil A., Douglas R. H., Salt T. E., Akimoto M. et al. 2006 Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Mali P., Ye Z., Hommond H. H., Yu X., Lin J., Chen G. et al. 2008 Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26, 1998–2005.

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuji N., Nakajima F. and Tokunaga K. 2008 HLA-haplotype banking and iPS cells. Nat. Biotechnol. 26, 739–740.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S. and Takahashi M. 2009 Induction of retinal pigmented epithelial cells from iPS cells. Jpn. J. Transplant. 44, 231–235.

    Google Scholar 

  • Okita K., Nakagawa M., Hyenjong H., Ichisaka T. and Yamanaka S. 2008 Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953.

    Article  CAS  PubMed  Google Scholar 

  • Osakada F., Ikeda H., Mandai M., Wataya T., Watanabe K., Yoshimura N. et al. 2008a Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 26, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Osakada F., Sasai Y. and Takahashi M. 2008b Control of neural differentiation from pluripotent stem cells. Inflamm. Regen. 28, 166–173.

    Article  CAS  Google Scholar 

  • Osakada F., Jin Z.-B., Hirami Y., Ikeda H., Danjyo T., Watanabe K. et al. 2009 In vitro differentiation of retinal cells from human pluripotent stem cells by small molecule induction. J. Cell Sci. 122, 3169–3179.

    Article  CAS  PubMed  Google Scholar 

  • Park I. H., Arora N., Huo H., Maherali N., Ahfeldt T., Shimamura A. et al. 2008 Disease-specific induced pluripotent stem cells. Cell 134, 877–886.

    Article  CAS  PubMed  Google Scholar 

  • Raya A., Rodriguez-Piza I., Guenechea G., Vassena R., Navarro S., Barrero M. J. et al. 2009 Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Redenti S., Neeley W. L., Rompani S., Saigal S., Yang J., Klassen H. et al. 2009 Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30, 3405–3414.

    Article  CAS  PubMed  Google Scholar 

  • Reh T. A. 2006 Neurobiology: right timing for retina repair. Nature 444, 156–157.

    Article  CAS  PubMed  Google Scholar 

  • Rezai K. A., Semnani R. T., Patel S. C., Ernest J. T. and van Seventer G. A. 1997 The immunogenic potential of human fetal retinal pigment epithelium and its relation to transplantation. Invest. Ophthalmol. Vis. Sci. 38, 2662–2671.

    CAS  PubMed  Google Scholar 

  • Schwartz S. B., Aleman T. S., Cideciyan A. V., Swaroop A., Jacobson S. G. and Stone E. M. 2003 De novo mutation in the RP1 gene (Arg677ter) associated with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 44, 3593–3597.

    Article  PubMed  Google Scholar 

  • Sieving P. A., Caruso R. C., Tao W., Coleman H. R., Thompson D. J., Fullmer K. R. et al. 2006 Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl. Acad. Sci. USA 103, 3896–3901.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T., Mandai M., Akimoto M., Yoshimura N. and Takahashi M. 2006 The simultaneous treatment of MMP-2 stimulants in retinal transplantation enhances grafted cell migration into the host retina. Stem Cells 24, 2406–2411.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T., Akimoto M., Imai H., Ueda Y., Mandai M., Yoshimura N. et al. 2007 Chondroitinase ABC treatment enhances synaptogenesis between transplant and host neurons in model of retinal degeneration. Cell Transplant. 16, 493–503.

    PubMed  Google Scholar 

  • Takahashi K. and Yamanaka S. 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by de-fined factors. Cell 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K. et al. 2007 Induction of pluripotent stemcells from adult human fibroblasts by defined factors. Cell 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S. et al. 1998 Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Varas F., Stadtfeld M., de Andres-Aguayo L., Maherali N., di Tullio A., Pantano L. et al. 2009 Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 27, 300–306.

    Article  CAS  PubMed  Google Scholar 

  • West E. L., Pearson R. A., Tschernutter M., Sowden J. C., Maclaren R. E. and Ali R. R. 2008 Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp. Eye Res. 86, 601–611.

    Article  CAS  PubMed  Google Scholar 

  • Wlelber R. G. and Gregory-Evans K. 2006 Retinitis pigmentosa and allied disorders. In Retina (ed. S. J. Ryan), pp. 395–498. Elsevier, New York, USA.

    Google Scholar 

  • Woltjen K., Michael I. P., Mohseni P., Desai R., Mileikovsky M., Hamalainen R. et al. 2009 piggyBac transposition reprograms fi-broblasts to induced pluripotent stem cells. Nature 458, 766–770.

    Article  CAS  PubMed  Google Scholar 

  • Wu Z., Chen J., Ren J., Bao L., Liao J., Cui C. et al. 2009 Generation of pig-induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 1, 46–54.

    Article  PubMed  CAS  Google Scholar 

  • Ye L., Chang J. C., Lin C., Sun X., Yu J. and Kan Y. W. 2009 Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Natl. Acad. Sci. USA 106, 9826–9830.

    Article  CAS  PubMed  Google Scholar 

  • Yu J., Vodyanik M. A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J. L., Tian S. et al. 2007 Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin II et al. 2009 Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayo Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, ZB., Okamoto, S., Mandai, M. et al. Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88, 417–424 (2009). https://doi.org/10.1007/s12041-009-0063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0063-5

Keywords

Navigation