Skip to main content
Log in

Evolution of ageing since Darwin

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In the late 19th century, the evolutionary approach to the problem of ageing was initiated by August Weismann, who argued that natural selection was more important for ageing than any physiological mechanism. In the mid-twentieth century, J. B. S. Haldane, P. B. Medawar and G. C. Williams informally argued that the force of natural selection falls with adult age. In 1966, W. D. Hamilton published formal equations that showed mathematically that two’ forces of natural selection’ do indeed decline with age, though his analysis was not genetically explicit. Brian Charlesworth then developed the required mathematical population genetics for the evolution of ageing in the 1970’s. In the 1980’s, experiments using Drosophila showed that the rate of ageing evolves as predicted by Hamilton’s’ forces of natural selection’. The discovery of the cessation of ageing late in life in the 1990’s was followed by its explanation in terms of evolutionary theory based on Hamilton’s forces. Recently, it has been shown that the cessation of ageing can also be manipulated experimentally using Hamilton’s’ forces of natural selection’. Despite the success of evolutionary research on ageing, mainstream gerontological research has largely ignored both this work and the opportunity that it provides for effective intervention in ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arking R. 2006 The biology of ageing, 3rd edition. Oxford University Press, New York.

    Google Scholar 

  • Baudisch A. 2005 Hamilton’s indicators of the force of selection. Proc. Nat. Acad. Sci. USA 102, 8263–8268.

    Article  PubMed  CAS  Google Scholar 

  • Baudisch A. 2008 Inevitable aging? Contributions to evolutionarydemographic theory. Springer, Berlin.

    Google Scholar 

  • Bidder G. P. 1932 Senescence. Br. Med. J. 1932, 583–585.

  • Brooks A., Lithgow G. J. and Johnson T. E. 1994 Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 263, 668–671.

    Article  PubMed  CAS  Google Scholar 

  • Carey J. R. 2003 Longevity: the biology and demography of life span. Princeton University Press, Princeton.

    Google Scholar 

  • Carey J. R., Liedo P., Orozco D. and Vaupel J. W. 1992 Slowing of mortality rates at older ages in large medfly cohorts. Science 258, 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Carey J. R., Liedo P. and Vaupel J. W. 1995 Mortality dynamics of density in the Mediterranean fruit fly. Exp. Gerontol. 30, 605–629.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B. 1970 Selection in populations with overlapping generations, Part 1: The use of Malthusian parameters in population genetics. Theor. Pop. Biol. 1, 352–370.

    Article  CAS  Google Scholar 

  • Charlesworth B. 1980 Evolution in age-structured populations. Cambridge University Press, London.

    Google Scholar 

  • Charlesworth B. 2001 Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation accumulation theory of ageing. J. Theor. Biol. 210, 47–65.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B. and Williamson J. A. 1975 Probability of survival of a mutant gene in an age-structured population and implications for evolution of life-histories. Genet. Res. 26, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B. and Partridge L. 1997 Ageing: leveling of the grim reaper. Curr. Biol. 7, R440–R442.

    Article  PubMed  CAS  Google Scholar 

  • Comfort A. 1956 The biology of senescence, 1st edition. Elsevier, NewYork.

    Google Scholar 

  • Comfort A. 1964 The biology of senescence, 2nd edition. Elsevier, NewYork.

    Google Scholar 

  • Comfort A. 1979 The biology of senescence, 3rd edition. Elsevier, NewYork.

    Google Scholar 

  • Curtsinger J. W., Fukui H. H., Townsend D. R. and Vaupel J. W. 1992 Demography of genotypes: failure of the limited life span paradigm in Drosophila melanogaster. Science 258, 461–463.

    Article  PubMed  CAS  Google Scholar 

  • Deckert-Cruz D. J., Matzkin L. M., Graves J. L. Jr and Rose M. R. 2004 Electrophoretic analysis of methuselah flies from multiple species. In Methuselah flies (ed. M. R. Rose, H. B. Passananti and M. Matos), pp. 237–448. World Scientific Publishing, Singapore.

    Google Scholar 

  • de Grey A. 2007 Protagonistic pleiotropy: why cancer may be the only pathogenic effect of accumulating nuclear mutations and epimutations in aging. Mech. Aging Dev. 128, 456–459.

    Article  PubMed  CAS  Google Scholar 

  • Fukui H. H., Xiu L. and Curtsinger J. W. 1993 Slowing of agespecific mortality rates in Drosophila melanogaster. Exp. Gerontol. 28, 585–599.

    Article  PubMed  CAS  Google Scholar 

  • Gavrilov L. A. and Gavrilova N. S. 1991 The biology of life span: a quantitative approach. Harwood, New York.

    Google Scholar 

  • Graves J. L. Jr and Mueller L. D. 1993 Population density effects on longevity. Genetica 91, 99–109.

    Article  PubMed  Google Scholar 

  • Greenwood M. and Irwin J. O. 1939 Biostatistics of senility. Hum. Biol. 11, 1–23.

    Google Scholar 

  • Haldane J. B. S. 1932 The causes of evolution. Longmans, London.

    Google Scholar 

  • Haldane J. B. S. 1941 New paths in genetics. George Allen and Unwin, London.

    Google Scholar 

  • Hamilton W. D. 1966 The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45.

    Article  PubMed  CAS  Google Scholar 

  • Kannisto V., Lauristen J. and Vaupel J. W. 1994 Reduction in mortality at advanced ages: several decades of evidence from 27 countries. Popul. Dev. Rev. 20, 973–810.

    Google Scholar 

  • Khazaeli A. A., Xiu L. and Curtsinger J. W. 1996 Effect of density on age-specific mortality in Drosophila: a density supplementation experiment. Genetica 98, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood T. B. L. and Cremer T. 1982 A reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60, 101–121.

    Article  PubMed  CAS  Google Scholar 

  • Luckinbill L. S., Arking L., Clare M. J., Cirocco W. C. and Buck S. A. 1984 Selection for delayed senescence in Drosophila melanogaster. Evolution 38, 996–1003.

    Article  Google Scholar 

  • Medawar P. B. 1946 Old age and natural death. Med. Quart. 2, 30–49.

    Google Scholar 

  • Medawar P. B. 1952 An unsolved problem of biology. Lewis, London.

    Google Scholar 

  • Mueller L. D. and Rose M. R. 1996 Evolutionary theory predicts late-life mortality plateaus. Proc. Natl. Acad. Sci. USA 93, 15249–15253.

    Article  PubMed  CAS  Google Scholar 

  • Mueller L. D., Rauser C. L. and Rose M. R. 2007 An evolutionary heterogeneity model of late-life fecundity in Drosophila. Biogerontology 8, 147–161.

    Article  PubMed  Google Scholar 

  • Nagai J., Lin C. Y. and Sabour M. P. 1995 Lines of mice selected for reproductive longevity. Gr. Dev. aging 59, 79–91.

    CAS  Google Scholar 

  • Nusbaum T. J., Graves J. L., Mueller L. D. and Rose M. R. 1993 Fruit fly aging and mortality. Science 260, 1567.

    Article  PubMed  CAS  Google Scholar 

  • Partridge L. and Fowler K. 1992 Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46, 76–91.

    Article  Google Scholar 

  • Pletcher S. D. and Curtsinger J. W. 1998 Mortality plateaus and the evolution of senescence: why are old-age mortality rates so low? Evolution 52, 454–464.

    Article  Google Scholar 

  • Rauser C. L., Mueller L. D. and Rose M. R. 2003 aging, fertility, and immortality. Exp. Geront. 38, 27–33.

    Article  Google Scholar 

  • Rauser C. L., Mueller L. D. and Rose M. R. 2006a The evolution of late life. Aging Res. Rev. 5, 14–32.

    Article  Google Scholar 

  • Rauser C. L., Tierney J. J., Gunion S. M., Covarrubias G. M., Mueller L. D. and Rose M. R. 2006b Evolution of late-life fecundity in Drosophila melanogaster. J. Evol. Biol. 19, 289–301.

    Article  PubMed  CAS  Google Scholar 

  • Rose M. R. 1982 Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48, 63–78.

    Article  Google Scholar 

  • Rose M. R. 1984 Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010.

    Article  Google Scholar 

  • Rose M. R. 1985 Life-history evolution with antagonistic pleiotropy and overlapping generations. Theor. Pop. Biol. 28, 342–358.

    Article  Google Scholar 

  • Rose M. R. 1991 Evolutionary biology of aging. Oxford University Press, New York.

    Google Scholar 

  • Rose M. R. 2005 The long tomorrow: how advances in evolutionary biology can help us postpone aging. Oxford University Press, New York.

    Google Scholar 

  • Rose M. R. and Charlesworth B. 1980 A test of evolutionary theories of senescence. Nature 287, 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Rose M. R., Drapeau M. D., Yazdi P. G., Shah K. H., Moise D. B., Thakar R. R. et al. 2002 Evolution of late-life mortality in Drosophila melanogaster. Evolution 56, 1982–1991.

    PubMed  Google Scholar 

  • Rose M. R, Passananti H. B. and Matos M. 2004 Methuselah flies: a case study in the evolution of aging. World Scientific Publishing, Singapore.

    Google Scholar 

  • Rose M. R., Rauser C. L. and Mueller L. D. 2005 Late life: a new frontier for physiology. Physiol. Bio. Zool. 78, 869–878.

    Article  Google Scholar 

  • Rose M. R., Rauser C. L., Mueller L. D. and Benford G. 2006 A revolution for ageing research. Biogerontology 7, 269–277.

    Article  PubMed  Google Scholar 

  • Rose M. R, Rauser C. L., Benford G., Matos M. and Mueller L. D. 2007 Hamilton’s forces of natural selection after forty years. Evolution 61, 1265–1276.

    Article  PubMed  Google Scholar 

  • Shostak S. 2006 The evolution of death: why we are living longer. State University of New York Press, Albany.

    Google Scholar 

  • Tatar M., Carey J. R. and Vaupel J. W. 1993 Long-term cost of reproduction with and without accelerated senescence in Callosobruchus maculates: analysis of age-specific mortality. Evolution 47, 1302–1312.

    Article  Google Scholar 

  • Vaupel J. W., Carey J. R., Christensen K., Johnson T. E., Yashin A. I., Holm N. V. et al. 1998 Biodemographic trajectories of longevity. Science 280, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Weismann A. 1889 Essays upon heredity and kindred biological problems, volume I, 1st edition. Clarendon Press, Oxford.

    Google Scholar 

  • Weismann A. 1891 Essays upon heredity and kindred biological problems, volume I, 2nd edition. Clarendon Press, Oxford.

    Google Scholar 

  • Weismann A. 1892a Aufsätze über Vererbung und verwandte biologische Fragen. Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Weismann A. 1892b Essays upon heredity and kindred biological problems, volume II. Clarendon Press, Oxford.

    Google Scholar 

  • Williams G. C. 1957 Pleiotropy, natural selection and the evolution of senescence. Evolution 11, 398–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, M.R., Burke, M.K., Shahrestani, P. et al. Evolution of ageing since Darwin. J Genet 87, 363–371 (2008). https://doi.org/10.1007/s12041-008-0059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-008-0059-6

Keywords

Navigation