Skip to main content
Log in

Source and depositional conditions of early Palaeogene coal-bearing sediments, Meghalaya, Eastern India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The early Palaeogene coals of Meghalaya represent the primitive rainforest elements that evolved in eastern India and one of the principal source rocks of the Assam Basin. Yet, a comprehensive palynological study and information about the source, depositional environment, diagenetic and thermal alterations of biomolecules in terrestrial lipids are largely lacking. This study investigates the palynology, mineralogy, hydrocarbon potential, biomarker compositions, and stable carbon isotopes from early Palaeogene coal-bearing sediments from the Tura Formation, Meghalaya. Terrestrial elements that formed these coals were mainly derived from the Bombacaceae and Arecaceae families of angiosperms, Araucariaceae family of gymnosperms and pteridophytes of Osmundaceae and Schizaeaceae families, revealed by palynological and biomarker records. The thermal maturity of the coals ranges from the late diagenetic to the early catagenetic stage. The transformation of higher plant triterpenoids from parent lipid macromolecules is attributed to early diagenetic microbial changes in terrestrial environments and subsequent coalification. The palynofloras, carbon stable isotope and XRD results indicate that the Tura Formation was deposited in a marginal marine environment within tropical–subtropical latitudes, in humid and warm climatic conditions during the late Palaeocene–early Eocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Balan E, Saitta A M, Mauri F and Calas G 2001 First principles modelling of the infrared spectrum of kaolinite; Am. Mineral. 86 1321–1330, https://doi.org/10.2138/am-2001-11-1201.

    Article  Google Scholar 

  • Bechtel A, Gruber W, Sachsenhofer R F, Gratzer R and Püttmann W 2001 Organic geochemical and stable carbon isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps (Austria); Org. Geochem. 32 1289–1310, https://doi.org/10.1016/S0146-6380(01)00101-2.

    Article  Google Scholar 

  • Biswas B 1962 Stratigraphy of the Mahadeo, Langpar, Cherra and Tura formations, Assam; Bull. Geol. Mining Metall. Soc. India 25 1–48.

    Google Scholar 

  • Chaffee A L and Fookes C J R 1988 Polycyclic aromatic hydrocarbons in Australian coals – III. Structural elucidation by proton nuclear magnetic resonance spectroscopy; Org. Geochem. 12 261–271.

    Article  Google Scholar 

  • Chaffee A L and Johns R B 1983 Polycyclic aromatic hydrocarbons in Australian coals – I. Angularly fused pentacyclic tri- and tetraaromatic components of Victorian brown coal; Geochim. Cosmochim. Acta 47 2141–2155, https://doi.org/10.1016/0016-7037(83)90039-X.

    Article  Google Scholar 

  • Chakraborty M 2004 Palynology of the Lakadong Sandstone (Late Palaeocene) exposed around Bhalukurung, North Cachar Hills, Assam; Palaeobot. 33(1–3) 113–121.

    Google Scholar 

  • de las Heras F X, Grimalt J O and Albaiges J 1991 Novel Cring cleaved triterpenoid-derived aromatic hydrocarbons in Tertiary brown coals; Geochim. Cosmochim. Acta 55 3379–3385, https://doi.org/10.1016/0016-7037(91)90495-Q.

    Article  Google Scholar 

  • Dutta S, Hartkopf-Fröder C, Witte K, Brocke R and Mann U 2013 Molecular characterisation of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation; Int. J. Coal Geol. 115 13–23, https://doi.org/10.1016/j.coal.2013.04.003.

    Article  Google Scholar 

  • Einsele G 1992 Sedimentology basin: Evolution, facies and sediment budget; Springer-Verlag, Berlin Heidelberg, New York.

    Book  Google Scholar 

  • Ellis L, Singh R K, Alexander R and Kagi R I 1996 Formation of isohexylalkylaromatic hydrocarbons from aromatisation-rearrangement of terpenoids in the sedimentary environment: A new class of biomarker; Geochim. Cosmochim. Acta 60 4747–4763, https://doi.org/10.1016/S0016-7037(96)00281-5.

    Article  Google Scholar 

  • Espitalié J, Deroo G and Marquis F 1986 Rock-Eval pyrolysis and its applications, Part III; Rev. Inst. Fr. Pét. 41(1) 73–89.

    Article  Google Scholar 

  • Farmer V C 1974 The Infrared Spectra of Minerals; Mineralogical Society, London.

    Book  Google Scholar 

  • Ferraro J R 1982 The Sadtler Infrared Spectra Handbook of Minerals and Clays; Sadtler/Heyden, Philadelphia, London.

    Google Scholar 

  • Fox C S 1937 Hidden coalfields of the Garo Hills, Assam, Director’s General report; A. M. Rec. Geol. Surv. 72(1) 40–41.

    Google Scholar 

  • Freeman K H, Boreham C J, Summons R E and Hayes J M 1994 The effect of aromatisation on the isotopic compositions of hydrocarbons during early diagenesis; Org. Geochem. 21 1037–1049, https://doi.org/10.1016/0146-6380(94)90067-1.

    Article  Google Scholar 

  • Gogoi M, Kumar T S and Phukan S 2020 Organic geochemistry, petrography, depositional environment and hydrocarbon potential of the Eocene coal deposits of west Daranggiri coalfield, Meghalaya; J. Geol. Soc. India 95 84–94, https://doi.org/10.1007/s12594-020-1389-0.

    Article  Google Scholar 

  • Hauke V, Graff R, Wehrung P, Trendel J M, Albrecht P, Riva A, Hopfgartner, Golacar F O, Buchs A and Eakin P A 1992a Novel triterpene-derived hydrocarbons of the arborane/fernane series in sediments: Part II; Geochim. Cosmochim. Acta 56 3595–3602.

    Article  Google Scholar 

  • Hauke V, Graft R, Wehrung P, Trendel J M, Albrecht P, Schwark L, Keely B J and Peakman T M 1992b Novel triterpene-derived hydrocarbons of arborane/femane series in sediments: Part l; Tetrahedron 48 3915–3924.

    Article  Google Scholar 

  • Hauke V, Graff R, Wehrung P, Hussler G, Trendel J M, Albrecht P, Riva A and Connan J 1993 Rearranged des-E-hopanoid hydrocarbons in sediments and petroleum; Org. Geochem. 20 415–423, https://doi.org/10.1016/0146-6380(93)90129-Y.

    Article  Google Scholar 

  • Hazarika S and Phukan S 2015 Organic geochemical appraisal of hydrocarbon potential and thermal maturity of Lower Palaeogene coal deposits of Meghalaya, India; J. Appl. Geochem. 17(2) 128–119.

    Google Scholar 

  • Hunt J M 1991 Generation of gas and oil from coal and other terrestrial organic matter; Org. Geochem. 17(6) 673–680, https://doi.org/10.1016/0146-6380(91)90011-8.

    Article  Google Scholar 

  • Jacob J, Disnar J R, Boussafir M, Albuquerque A L S, Sifeddine A and Turcq B 2007 Contrasted distributions of triterpene derivatives in the sediments of Lake Caco´ reflect palaeoenvironmental changes during the last 20,000 yrs in NE Brazil; Org. Geochem. 38 180–197.

    Article  Google Scholar 

  • Jiang L and George S C 2019 Biomarker signatures of Upper Cretaceous Latrobe Group petroleum source rocks, Gippsland Basin, Australia: Distribution and geological significance of aromatic hydrocarbons; Org. Geochem. 138 103905, https://doi.org/10.1016/j.orggeochem.2019.103905.

    Article  Google Scholar 

  • Kar R K and Kumar M 1986 Palaeocene palynostratigraphy of Meghalaya; Pollen et Spores 28 177–217.

    Google Scholar 

  • Kar R K and Saxena R K 1981 Palynological investigation of a bore core near Rataria, Southern Kutch, Gujarat; Geophytology 11(2) 103–124.

    Google Scholar 

  • Keith M L and Degens E T 1959 Geochemical indicators of marine and freshwater; In: Researches in Geochemistry (ed.) Abelson P H, John Wiley and Sons, New York, pp. 38–61.

    Google Scholar 

  • Khanolkar S and Sharma J 2019 Record of Early to Middle Eocene palaeoenvironmental changes from lignite mines, western India; J. Micropalaeontol. 38 1–24, https://doi.org/10.5194/jm-38-1-2019.

    Article  Google Scholar 

  • Kohn M J 2010 Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate; Proc. Nat. Acad. Sci. 107 19,691–19,695.

    Article  Google Scholar 

  • Logan G A and Eglinton G 1994 Biogeochemistry of the Miocene lacustrine deposit, at Clarkia, northern Idaho, USA; Org. Geochem. 21 857–870, https://doi.org/10.1016/0146-6380(94)90045-0.

    Article  Google Scholar 

  • Mandal J 1986 Palynology study of Sutunga coal seam, Jaintia Hills, Meghalaya; Palaeobot. 35(2) 196–199.

    Google Scholar 

  • Mandal J 1990 Palynological investigation of Palaeocene sediments from Thanjinath, Meghalaya; Palaeobot. 37(3) 324–330.

    Google Scholar 

  • Marzi R, Torkelson B E and Olson R K 1993 A revised carbon preference index; Org. Geochem. 20(8) 1303–1306, https://doi.org/10.1016/0146-6380(93)90016-5.

    Article  Google Scholar 

  • Meyers K L 1997 Organic geochemical proxies of palaeoceanographic, palaeolinologic, and palaeoclimatic processes; Org. Geochem. 27(5/6) 213–250, https://doi.org/10.1016/S0146-6380(97)00049-1.

    Article  Google Scholar 

  • Mißbach H, Duda J P, Lünsdorf N K, Schmidt B C and Thiel V 2016 Testing the preservation of biomarkers during experimental maturation of an immature kerogen; Int. J. Astrobiol. 15 165–175, https://doi.org/10.1017/S1473550416000069.

    Article  Google Scholar 

  • Monga P, Srivastava G, Kumar M and Mehrotra R C 2014 Further palynological investigation of coaliferous sequences of Tura Formation of Nongwalbibra, East Garo Hills, Meghalaya: Inferences on palaeovegetation and palaeoclimate; Palaeobot. 63 79–85.

    Google Scholar 

  • Murray A P, Summons R E, Boreham C J and Dowling L M 1994 Biomarker and n-alkane isotope profiles for Tertiary oils: Relationship to source rock depositional setting; Org. Geochem. 22 521–542, https://doi.org/10.1016/0146-6380(94)90124-4.

    Article  Google Scholar 

  • Murray A P, Sosrowidjojo I B, Alexander R, Kagi R I, Norgate C M and Summons R E 1997 Oleananes in oils and sediments: Evidence of marine influence during early diagenesis?; Geochim. Cosmochim. Acta 61 1261–1276, https://doi.org/10.1016/S0016-7037(96)00408-5.

    Article  Google Scholar 

  • Nytoft H P, Kildahl-Andersen G and Samuel O J 2010 Rearranged oleananes: Structural identification and distribution in a worldwide set of Late Cretaceous/Tertiary oils; Org. Geochem. 41 1104–1118, https://doi.org/10.1016/j.orggeochem.2010.06.008.

    Article  Google Scholar 

  • Ogala J E 2011 Hydrocarbon potential of the Upper Cretaceous coal and shale units in the Anambra basin, southeastern Nigeria; Pet. Coal 53(1) 35–44.

    Google Scholar 

  • Paul S and Dutta S 2016 Terpenoid composition of fossil resins from western India: New insights into the occurrence of resin-producing trees in Early Palaeogene equatorial rainforest of Asia; Int. J. Coal Geol. 167 65–74, https://doi.org/10.1016/j.coal.2016.09.008.

    Article  Google Scholar 

  • Paul S, Sharma J, Singh B D, Saraswati P K and Dutta S 2015 Early Eocene Equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, Western India; Int. J. Coal Geol. 149 77–92, https://doi.org/10.1016/j.coal.2015.06.017.

    Article  Google Scholar 

  • Pearson M J and Alam M 1993 Bicadinanes and other terrestrial terpenoids in immature Oligocene sedimentary rocks and a related oil from the Surma Basin, NE Bangladesh; Org. Geochem. 20 539–554, https://doi.org/10.1016/0146-6380(93)90022-4.

    Article  Google Scholar 

  • Peters K E 1986 Guidelines for evaluating petroleum source rock using programmed pyrolysis; AAPG Bull. 70 318–329.

    Google Scholar 

  • Peters K E and Moldowan J 1993 The biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments; Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Peters K E, Walters C C and Moldowan J M 2005 The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history; Cambridge University Press, Cambridge.

    Google Scholar 

  • Phukan S, Hazarika S, Purohit S and Barooah R K 2013 Source rock potential and thermal maturity of coal deposits of the Langrin coalfield, west Khasi Hills, Meghalaya; South East Asian J. Sediment. Basin Res. 1 45–49.

    Google Scholar 

  • Poinsot J, Adam P, Trendel J M, Connan J and Albrecht P 1995 Diagenesis of higher plant triterpenes in evaporitic sediments; Geochim. Cosmochim. Acta 59 4653–4661, https://doi.org/10.1016/0016-7037(95)00307-X.

    Article  Google Scholar 

  • Prasad V, Garg R, Ateequzzaman K, Singh I B and Joachimski M M 2006 Apectodinium acme and palynofacies characteristics in the latest Palaeocene–earliest Eocene of northeastern India: Biotic response to the Palaeocene-Eocene Thermal Maxima (PETM) in low latitude; J. Palaeontol. Soc. India 51 75–91.

    Google Scholar 

  • Prasad V, Farooqui A, Tripathi S K M, Garg R and Thakur B 2009 Evidence of Late Palaeocene–Early Eocene equatorial rain forest refugia in southern Western Ghats, India; J. Biosci. 34 777–797, https://doi.org/10.1007/s12038-009-0062-y.

    Article  Google Scholar 

  • Raju S V and Mathur N 1995 Petroleum geochemistry of a part of Upper Assam Basin, India: A brief overview; Org. Geochem. 23 55–70, https://doi.org/10.1016/0146-6380(94)00104-9.

    Article  Google Scholar 

  • Rangel A, Moldowan J M, Niño C, Parra P and Giraldo B N 2002 Umir Formation: Organic geochemical and stratigraphic assessment as cosource for Middle Magdalena Basin Oil, Colombia; AAPG Bull. 86(12) 2069–2087, https://doi.org/10.1306/61EEDE04-173E-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Rudra A, Dutta S and Raju S V 2017 The Palaeogene vegetation and petroleum system in the tropics: A biomarker approach; Mar. Pet. Geol. 86 38–51, https://doi.org/10.1016/j.marpetgeo.2017.05.008.

    Article  Google Scholar 

  • Rullkötter J, Peakman T M and ten Haven H L 1994 Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry; Org. Geochem. 21 215–233, https://doi.org/10.1016/0146-6380(94)90186-4.

    Article  Google Scholar 

  • Saxena R K, Tripathi S K M and Prasad V 1996 Palynofloral investigation of the Tura Formation (Palaeocene) in Nongwal Bibra area, East Garo Hills, Meghalaya; Geophytol. 26 19–31.

    Google Scholar 

  • Scalan E S and Smith J E 1970 An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum; Geochim. Cosmochim. Acta 34(5), https://doi.org/10.1016/0016-7037(70)90019-0.

  • Sharma S, Mora G, Johnston J W and Thompson T A 2005 Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene; Quat. Sci. Rev. 24 1941–1951, https://doi.org/10.1016/j.quascirev.2004.11.009.

    Article  Google Scholar 

  • Siever R 1968 Establishment of equilibrium between clays and sea water; Earth Planet. Sci. Lett. 5 106–110, https://doi.org/10.1016/S0012-821X(68)80023-8.

    Article  Google Scholar 

  • Singh R Y 1977a Stratigraphy and palynology of the Tura Formation in the type area, Part II (Descriptive palynology); Palaeobot. 23(3) 189–205.

    Google Scholar 

  • Singh R Y 1977b Stratigraphy and palynology of the Tura Formation in the type area, Part III (Discussion); Palaeobot. 24 1–12.

    Google Scholar 

  • Singh R S 1990 Palynology of Langrin coalfield, South Shillong Plateau, Meghalaya; In: Proc. Symp. Vistas in Indian Palaeobotany (eds) Jain K P and Tiwari R S, Palaeobot. 38 217–228.

  • Singh A K 2015 Petrological investigation of Eocene coals, Garo Hills, Meghalaya, India; Arab. J. Geosci. 8 10,705–10,714, https://doi.org/10.1007/s12517-015-1986-1.

    Article  Google Scholar 

  • Singh Y R, Abbott M B, Arnold T E and Singh Sh P 2021 Early Eocene palynofloras and geochemistry from the Garo Hills in Meghalaya (India); Rev. Palaeobot. Palynol. 292 104458, https://doi.org/10.1016/j.revpalbo.2021.104458.

    Article  Google Scholar 

  • Singh Y R, Rudra A, Singh Sh P and Devi N R 2022 Palynological and organic geochemical studies of the middle Eocene Siju Formation of Garo Hills, Meghalaya, India; J. Earth Syst. Sci. 31, https://doi.org/10.1007/s12040-021-01760-6.

  • Snowdon L R 1991 Oil from Type III organic matter: Resinite revisited; Org. Geochem. 17 743–747, https://doi.org/10.1016/0146-6380(91)90018-F.

    Article  Google Scholar 

  • Spyckerelle C, Greiner A Ch, Albrecht P and Ourisson G 1977 Aromatic hydrocarbons from geological sources. Part III: A tetrahydrochrysene derived from triterpenes in recent and old sediments: 3,3,7-trimethyl-1.2,3,4-tetrahydrochrysene; J. Chem. Res. (S) 330–331.

  • Srivastava J and Prasad V 2015 Effect of global warming on diversity pattern in Nypa mangroves across Palaeocene–Eocene transition in the palaeo-equatorial region of the Indian sub-continent; Palaeogeogr. Palaeoclimatol. Palaeoecol. 429 1–12, https://doi.org/10.1016/j.palaeo.2015.03.026.

    Article  Google Scholar 

  • Stout S A 1992 Aliphatic and aromatic triterpenoid hydrocarbons in a Tertiary angiospermous lignite; Org. Geochem. 18 51–66, https://doi.org/10.1016/0146-6380(92)90143-L.

    Article  Google Scholar 

  • Stout S A 1995 Resin-derived hydrocarbons in fresh and fossil dammar resins and Miocene rocks and oils in the Mahakam Delta, Indonesia; In: Amber, Resinite, and Fossil Resins (eds) Anderson K B and Crelling J C, ACS Symp. Ser. 617 43–75.

  • ten Haven H L and Rullkötter J 1989 Oleanene, ursene and other terrigenous triterpenoid biological marker hydrocarbons in Baffin Bay sediments; In: ODP Sci. Results (eds) Srivastava et al., Ocean Drilling Program, College Station, TX 105 232–242.

  • ten Haven H L, Peakman T M and Rullkötter J 1992 Δ2-Triterpenes: Early intermediates in the diagenesis of terrigenous triterpenoids; Geochim. Cosmochim. Acta 56(5) 1993–2000, https://doi.org/10.1016/0016-7037(92)90325-D.

    Article  Google Scholar 

  • Tissot B P and Welte D H 1984 Petroleum formation and occurrence; Springer-Verlag, New York.

    Book  Google Scholar 

  • Tripathi S K M and Srivastava D 2010 Palynological investigations, facies analysis and palaeoenvironmental interpretations from late Palaeocene to early Eocene lignite and associated sediments of Barmer, Western India; Palaeobot. 59(1–3) 1–132.

    Google Scholar 

  • Tripathi S K M, Saxena R K and Prasad V 2000 Palynological investigation of the Tura Formation (Early Eocene) exposed along the Tura–Dalu Road, West Garo Hills, Meghalaya, India; Palaeobot. 49 239–251.

    Google Scholar 

  • Tripathi S K M, Kumar M and Srivastava D 2009 Palynology of Lower Palaeogene (Thanetian–Ypresian) coastal deposits from the Barmer basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and Palaeoclimatic implications; Geol. Acta 7(7) 147–160.

    Google Scholar 

  • Van Aarssen B G K, Cox H C, Hoogendoorn P and De Leeuw J W 1990 A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia; Geochim. Cosmochim. Acta 54 3021–3031, https://doi.org/10.1016/0016-7037(90)90119-6.

    Article  Google Scholar 

  • Van der Marel H W and Beutelspacher H 1976 Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures; Elsevier Science Publishing Company, Amsterdam, Oxford and New York.

    Google Scholar 

  • Verma P, Garg R, Rao M R and Bajpai S 2019 Palynofloral diversity and Palaeoenvironments of early Eocene Akri lignite succession, Kutch Basin, western India; Palaeobiodivers. Palaeoenviron., https://doi.org/10.1007/s12549-019-00388-1.

  • Zachos J C, Mc Carren H, Murphy B, Röhl U and Westerhold T 2010 Tempo and scale of late Palaeocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals; Earth Planet. Sci. Lett. 299 242–249, https://doi.org/10.1016/j.epsl.2010.09.004.

    Article  Google Scholar 

Download references

Acknowledgements

The author (YRS) acknowledge the Science and Engineering Research Board (SERB), Government of India (Grant No. EEQ/2016/000062), and Indian National Science Academy (INSA), New Delhi (INSA/SP/VS-27/2017-2018/518) for providing fund to carry out this research work. We are also grateful to the ONGC, Dehra Dun, India, Indian Institute of Technology, Bombay, and Pittsburgh University, USA, for allowing us to carry out Rock–Eval Pyrolysis and stable isotope data for this research. We also are thankful to M Sapana Devi, T Nganthoi Chanu, Mr W Ajoykumar Singh and Dr G K Trivedi (Retd. Scientist, BSIP) for help during sample analysis and identification.

Author information

Authors and Affiliations

Authors

Contributions

Sh Priyokumar Singh collected samples, conducted a literature review, prepared palynological slides and prepared the manuscript. Prof. Y Raghumani Singh collected samples, identified palynological assemblages, and prepared and revised the manuscript. Dr Arka Rudra and Prof. Suryendu Dutta participated in the result interpretation of the biomarker, revised it, and provided inputs for improvement. N Reshma Devi and A Bijayalaxmi Devi supported the chemical analysis and preparation of slides. Dr Trivedi also helped with the revision of this manuscript and identification of palynomorphs.

Corresponding author

Correspondence to Y Raghumani Singh.

Additional information

Communicated by Joydip Mukhopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Rudra, A., Singh, Y.R. et al. Source and depositional conditions of early Palaeogene coal-bearing sediments, Meghalaya, Eastern India. J Earth Syst Sci 132, 184 (2023). https://doi.org/10.1007/s12040-023-02198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02198-8

Keywords

Navigation