Skip to main content
Log in

Simulated dynamics and thermodynamics processes leading to the rapid intensification of rare tropical cyclones over the North Indian Oceans

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The life cycle dynamics and intensification processes of three long-duration tropical cyclones (TCs), viz., Fani (2019), Luban (2018), and Ockhi (2017) formed over the North Indian Ocean (NIO) have been investigated by developing a high-resolution (6 km × 6 km) mesoscale analysis using WRF and En3DVAR data assimilation system. The release of CAPE in nearly saturated middle-level relative humidity caused intense diabatic heating, leading to an increase in low-level convergence triggering rapid intensification (RI). The strengthening of the relative vorticity tendency terms was due to vertical stretching (TC Fani) and middle tropospheric advection (TCs Luban and Ockhi). The increase or decrease in upper-tropospheric divergence led to RI through two different mechanisms. The increase in upper divergence strengthens the vortical convection (in TC Luban and Fani) by enhancing the moisture and heat transport, whereas its decrease caused a reduction in the upper-level ventilation flow at 200 hPa followed by moisture accumulation, enhanced diabatic heating, and strengthened the warm core (TC Ockhi). The RI caused the vortex of three cyclones to extend up to the upper troposphere. The well organised wind during RI led the unorganised, weak, discontinuous vertical vortex columns to become organised with intense vertical velocity throughout the column. Spatial distributions of Okubo–Wiess (OW) parameter showed TC core dominated by vorticity than strain, since deep depression (DD) stages.

Highlights

  • The saturated middle-level relative humidity caused intense diabatic heating, and then release of CAPE led to a rise in low-level spin-up triggering the RI.

  • The strengthening of the relative vorticity tendency terms was due to stretching (TC Fani) and middle tropospheric advection (TCs Luban and Ockhi).

  • The increase or decrease in upper-tropospheric divergence led to RI through two different mechanisms.

  • The RI caused the vortex of three cyclones to extend up to the upper troposphere.

  • RI led unorganised, weak, discontinuous vertical vortex columns to become organised with intense vertical velocity throughout the column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Barker D M, Huang W, Guo Y R, Bourgeois A J and Xiao Q N 2004 A three-dimensional variational data assimilation system for MM5: Implementation and initial results; Mon. Weather Rev. 132 897–914.

    Article  Google Scholar 

  • Bell M M and Montgomery M T 2010 Sheared deep vortical convection in pre-depression Hagupit during TCS08: Deep convection in hagupit during TCS08; Geophys. Res. Lett. 37(6), https://doi.org/10.1029/2009GL042313.

  • Bhalachandran S, Nadimpalli R, Osuri K K, Marks F D, Gopalakrishnan S, Subramanian S, Mohanty U C and Niyogi D 2019 On the processes influencing rapid intensity changes of tropical cyclones over the Bay of Bengal; Sci. Rep. 9(1) 1–14, https://doi.org/10.1038/s41598-019-40332-z.

    Article  Google Scholar 

  • Bhate J, Munsi A, Kesarkar A K, Kutty G and Deb S K 2021 Impact of assimilation of satellite retrieved ocean surface winds on the tropical cyclone simulations over the north Indian Ocean; Earth Space Sci. 8(8), https://doi.org/10.1029/2020EA001517.

  • Bister M and Emanuel K A 1998 Dissipative heating and hurricane intensity; Meteorol. Atmos. Phys. 65 233–240, https://doi.org/10.1007/BF01030791.

    Article  Google Scholar 

  • Callaghan J 2017 Asymmetric inner core convection leading to tropical cyclone intensification; Trop. Cyclone Res. Rev. 6 55–66, https://doi.org/10.6057/2017TCRRh3.02.

    Article  Google Scholar 

  • Carr L III and Elsberry R L 1990 Observational evidence for predictions of tropical cyclone propagation relative to environmental steering; J. Atmos. Sci. 47 542–546.

    Article  Google Scholar 

  • Chan J C 1985 Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon; Mon. Weather Rev. 113 599–606.

    Article  Google Scholar 

  • Chen X, Zhang J A and Marks F D 2019 A thermodynamic pathway leading to rapid intensification of tropical cyclones in shear; Geophys. Res. Lett. 46 9241–9251.

    Article  Google Scholar 

  • DeMaria M, Sampson C R, Knaff J A and Musgrave K D 2014 Is tropical cyclone intensity guidance improving?; Bull. Am. Meteorol. 95 387–398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    Article  Google Scholar 

  • Ditchek S D, Nelson T C, Rosenmayer M and Corbosiero K L 2017 The relationship between tropical cyclones at genesis and their maximum attained intensity; J. Clim. 30 4897–4913, https://doi.org/10.1175/JCLI-D-16-0554.1.

    Article  Google Scholar 

  • Dunkerton T J, Montgomery M and Wang Z 2009 Tropical cyclogenesis in a tropical wave critical layer: Easterly waves; Atmos. Chem. Phys. 9 5587–5646.

    Article  Google Scholar 

  • Elhmaïdi D, Provenzale A and Babiano A 1993 Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion; J. Fluid Mech. 257 533–558, https://doi.org/10.1017/S0022112093003192.

    Article  Google Scholar 

  • Emanuel K, Desautels C, Holloway C and Korty R 2004 Environmental control of tropical cyclone intensity; J. Atmos. Sci. 61(7) 843–858.

    Article  Google Scholar 

  • Geetha B and Balachandran S 2016 Diabatic heating and convective asymmetries during rapid intensity changes of tropical cyclones over North Indian Ocean; Trop. Cyclone Res. Rev. 5(1–2) 32–46.

    Google Scholar 

  • Geetha B and Balachandran S 2020 Development and rapid intensification of tropical cyclone OCKHI (2017) over the North Indian Ocean; J. Atmos. Res. 3(3).

  • Gjorgjievska S and Raymond D J 2014 Interaction between dynamics and thermodynamics during tropical cyclogenesis; Atmos. Chem. Phys. 14 3065–3082, https://doi.org/10.5194/acp-14-3065-2014.

    Article  Google Scholar 

  • Gray W M 1968 Global view of the origin of tropical disturbances and storms; Mon. Weather Rev. 96 669–700.

    Article  Google Scholar 

  • Gray W M 1975 Tropical cyclone genesis. Department of Atmospheric Science, Paper No. 234, Colorado State University, Fort Collins, CO, 121p, https://mountainscholar.org/bitstream/handle/10217/247/0234_Bluebook.pdf;sequence=1.

  • Hack J J and Schubert W H 1986 Nonlinear response of atmospheric vortices to heating by organised cumulus convection; J. Atmos. Sci. 43 1559–1573.

    Article  Google Scholar 

  • Hanley D, Molinari J and Keyser D 2001 A composite study of the interactions between tropical cyclones and upper-tropospheric troughs; Mon. Weather Rev. 129(10) 2570–2584.

    Article  Google Scholar 

  • Hendricks E A, Montgomery M T and Davis C A 2004 The role of ‘Vortical’ hot towers in the formation of tropical cyclone Diana (1984); J. Atmos. Sci. 61(11) 1209–1232.

    Article  Google Scholar 

  • Hendricks E A, Peng M S, Fu B and Li T 2010 Quantifying environmental control on tropical cyclone intensity change; Mon. Weather Rev. 138 3243–3271, https://doi.org/10.1175/2010MWR3185.1.

    Article  Google Scholar 

  • Ito K, Wu C C, Chan K T, Toumi R and Davis C 2020 Recent progress in the fundamental understanding of tropical cyclone motion; J. Meteorol. Soc. Jpn. Ser II.

  • Jaiswal N, Kumar P and Kishtawal C 2019 SCATSAT-1 wind products for tropical cyclone monitoring, prediction and surface wind structure analysis; Curr. Sci. 117 983–992.

    Article  Google Scholar 

  • Jaiswal N, Deb S K and Kishtawal C M 2022 Intensification of tropical cyclone FANI observed by INSAT-3DR rapid scat data; Theor. Appl. Climatol., https://doi.org/10.21203/rs.3.rs-368454/v1.

    Article  Google Scholar 

  • Jung J H and Arakawa 2007 A three-dimensional anelastic model based on the vorticity equation; Mon. Weather Rev. 136 276–294, https://doi.org/10.1175/2007MWR295.1.

    Article  Google Scholar 

  • Kaplan J, DeMaria M and Knaff J A 2010 A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins; Weather Forecast. 25 220–241.

    Article  Google Scholar 

  • Kieu C Q and Zhang D L 2009 An analytical model for the rapid intensification of tropical cyclones; Quart. J. Roy. Meteorol. Soc. 135 1336–1349.

    Article  Google Scholar 

  • Kotal S and Bhowmik S R 2013 Large-scale characteristics of rapidly intensifying tropical cyclones over the Bay of Bengal and a rapid intensification (RI) index; Mausam 64 13–24.

    Article  Google Scholar 

  • Kutty G and Gohil K 2017 The role of mid-level vortex in the intensification and weakening of tropical cyclones; J. Earth Syst. Sci. 126(7) 1–12, https://doi.org/10.1007/s12040-017-0879-y.

    Article  Google Scholar 

  • Lee M and Frisius T 2018 On the role of convective available potential energy (CAPE) in tropical cyclone intensification; Tellus a: Dyn. Meteorol. Oceanogr. 70(1) 1–18, https://doi.org/10.1080/16000870.2018.1433433.

    Article  Google Scholar 

  • Mapes B E and Houze R A Jr 1995 Diabatic divergence profiles in western Pacific mesoscale convective systems; J. Atmos. Sci. 52(10) 1807–1828.

    Article  Google Scholar 

  • Merrill R T 1988 Environmental influences on hurricane intensification; J. Atmos. Sci. 45 1678–1687.

    Article  Google Scholar 

  • Miyamoto Y and Nolan D S 2018 Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealised simulations; J. Atmos. Sci. 75 555–569.

    Article  Google Scholar 

  • Miyamoto Y and Takemi T 2015 A triggering mechanism for rapid intensification of tropical cyclones; J. Atmos. Sci. 72 2666–2681.

    Article  Google Scholar 

  • Mohanty U, Nadimpalli R and Mohanty S 2021 Understanding the rapid intensification of tropical cyclone Titli using Hurricane WRF model simulations; Mausam 72 167–176.

    Article  Google Scholar 

  • Molinari J and Vollaro D 2010 Rapid intensification of a sheared tropical storm; Mon. Weather Rev. 138 3869–3885.

    Article  Google Scholar 

  • Montgomery M T and Kallenbach R J 1997 A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes; Quart. J. Roy. Meteorol. Soc. 123 435–465.

    Article  Google Scholar 

  • Montgomery M T, Nicholls M E, Cram T A and Saunders A B 2006 A vortical hot tower route to tropical cyclogenesis; J. Atmos. Sci. 63 355–386, https://doi.org/10.1175/JAS3604.1.

    Article  Google Scholar 

  • Munsi A, Kesarkar A, Bhate J, Panchal A, Singh K, Kutty G and Giri R 2021 Rapidly intensified, long duration North Indian Ocean tropical cyclones: Mesoscale downscaling and validation; Atmos. Res. 259 105678.

    Article  Google Scholar 

  • Nadimpalli R, Mohanty S, Pathak N, Osuri K K, Mohanty U C and Chatterjee S 2021 Understanding the characteristics of rapid intensity changes of tropical cyclones over North Indian Ocean; SN Appl. Sci. 3 1–12.

    Google Scholar 

  • Peng M S, Jeng B F and Williams R T 1999 A numerical study on tropical cyclone Intensification. Part I: Beta effect and mean flow effect; J. Atmos. Sci. 56(10) 1404–1423.

    Article  Google Scholar 

  • Persing J, Montgomery M T, McWilliams J C and Smith R K 2013 Asymmetric and axisymmetric dynamics of tropical cyclones; Atmos. Chem. Phys. 13 12,299–12,341, https://doi.org/10.5194/acp-13-12299-2013.

    Article  Google Scholar 

  • Rajasree V P M, Kesarkar A P, Bhate J N, Singh V, Umakanth U and Varma T H 2016a A comparative study on the genesis of North Indian Ocean tropical cyclone Madi (2013) and Atlantic Ocean tropical cyclone Florence (2006); J. Geophys. Res. Atmos. 121(23) 13,826–13,858, https://doi.org/10.1002/2016JD025412.

    Article  Google Scholar 

  • Rajasree V P M, Kesarkar A P, Bhate J N, Umakanth U, Singh V and Varma T H 2016b Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone Madi (2013); J. Geophys. Res. Atmos. 121(15) 8949–8982, https://doi.org/10.1002/2016JD025188.

    Article  Google Scholar 

  • Rajasree V P M, Routray A, George J P, Kumar S and Kesarkar A P 2021 Study of cyclogenesis of developing and non-developing tropical systems of NIO using NCUM forecasting system; Meteorol. Atmos. Phys. 133 379–397, https://doi.org/10.1007/s00703-020-00756-z.

    Article  Google Scholar 

  • Routray A, Lodh A, Dutta D and George J P 2020 Study of an extremely severe cyclonic storm ‘Fani’ over Bay of Bengal using regional NCUM modeling system: A case study; J. Hydrol. 590 125357, https://doi.org/10.1016/j.jhydrol.2020.125357.

    Article  Google Scholar 

  • Sanger N T, Montgomery M T, Smith R K and Bell M M 2014 An observational study of tropical cyclone spin-up in super typhoon Jangmi (2008) from 24 to 27 September; Mon. Weather Rev. 142 3–28, https://doi.org/10.1175/MWR-D-12-00306.1.

    Article  Google Scholar 

  • Sear J and Velden C S 2014 Investigating the role of upper levels in tropical cyclone genesis; Trop. Cyclone Res. Rev. 3 91–110.

    Google Scholar 

  • Shapiro L J and Willoughby H E 1982 The response of balanced hurricanes to local sources of heat and momentum; J. Atmos. Sci. 39 378–394.

    Article  Google Scholar 

  • Sheng C, Wu G, Tang Y, He B, Xie Y, Ma T, Ma T, Li J, Bao Q and Liu Y 2021 Characteristics of the potential vorticity and its budget in the surface layer over the Tibetan plateau; Int. J. Climatol. 41 439–455, https://doi.org/10.1002/joc.6629.

    Article  Google Scholar 

  • Singh V K and Roxy M 2022 A review of the ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean; Earth Sci. Rev. 103967.

  • Singh K, Panda J, Sahoo M and Mohapatra M 2019 Variability in tropical cyclone climatology over North Indian Ocean during the period 1891 to 2015; Asia-Pac. J. Atmos. Sci. 55 269–287.

    Article  Google Scholar 

  • Singh V K, Roxy M and Deshpande M 2020 The unusual long track and rapid intensification of very severe cyclone Ockhi; Curr. Sci. 119 771–779.

    Article  Google Scholar 

  • Singh V, Konduru R T, Srivastava A K, Momin I M, Kumar S, Singh A K, Bisht D S, Tiwari S and Sinha A K 2021 Predicting the rapid intensification and dynamics of pre-monsoon extremely severe cyclonic storm ‘Fani’ (2019) over the Bay of Bengal in a 12-km global model; Atmos. Res. 247(6) 105222, https://doi.org/10.1016/j.atmosres.2020.105222.

    Article  Google Scholar 

  • Smith R K and Montgomery M T 2015 Toward clarity on understanding tropical cyclone intensification; J. Atmos. Sci. 72 3020–3031, https://doi.org/10.1175/JAS-D-15-0017.1.

    Article  Google Scholar 

  • Smith R K and Montgomery M T 2016 The efficiency of diabatic heating and tropical cyclone intensification; Quart. J. Roy. Meteorol. Soc. 142 2081–2086.

    Article  Google Scholar 

  • Stern D P, Vigh J L, Nolan D S and Zhang F 2015 Revisiting the relationship between eyewall contraction and intensification; J. Atmos. Sci. 72 1283–1306, https://doi.org/10.1175/JAS-D-14-0261.1.

    Article  Google Scholar 

  • Sun Y, Zhong Z, Li T, Yi L, Hu Y, Wan H, Chen H, Liao Q, Ma C and Li Q 2017 Impact of ocean warming on tropical cyclone size and its destructiveness; Sci. Rep. 7(1) 1–10.

    Google Scholar 

  • Tory K J and Frank W M 2010 Tropical cyclone formation. In: Global perspectives on tropical cyclones: From science to mitigation (ed.) Chan C L and Kepert J D, pp. 55–91.

  • Vigh J L and Schubert W H 2009 Rapid development of the tropical cyclone warm core; J. Atmos. Sci. 66 3335–3350, https://doi.org/10.1175/2009JAS3092.1.

    Article  Google Scholar 

  • Wang Z 2012 Thermodynamic aspects of tropical cyclone formation; J. Atmos. Sci. 69 2433–2451, https://doi.org/10.1175/JAS-D-11-0298.1.

    Article  Google Scholar 

  • Wang Z 2014 Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation; J. Atmos. Sci. 71 1681–1700, https://doi.org/10.1175/JAS-D-13-0257.1.

    Article  Google Scholar 

  • Wang B and Chan J C L 2002 How strong ENSO events affect tropical storm activity over the western north Pacific; J. Clim. 15(13) 1643–1658.

    Article  Google Scholar 

  • Wang Y and Wu C C 2004 Current understanding of tropical cyclone structure and intensity changes: A review; Meteorol. Atmos. Phys. 87 257–278, https://doi.org/10.1007/s00703-003-0055-6.

    Article  Google Scholar 

  • Wang Z, Montgomery M and Dunkerton T 2010 Genesis of pre–hurricane Felix (2007). Part II: warm core formation, precipitation evolution, and predictability; J. Atmos. Sci. 67 1730–1744.

    Article  Google Scholar 

  • Wang X, Zhou X, Zuyu T and Hua L 2016 Discussion on the complete-form vorticity equation and slantwise vorticity development; J. Meteorol. Res. 30(1) 67–75.

    Article  Google Scholar 

  • Williams E and Renno N 1993 An analysis of the conditional instability of the tropical atmosphere; Mon. Weather Rev. 121 21–36.

    Article  Google Scholar 

  • Willoughby H E 1979 Forced secondary circulations in hurricanes; J. Geophys. Res. Oceans 84(C6) 3173–3183, https://doi.org/10.1029/JC084iC06p03173.

    Article  Google Scholar 

  • Willoughby H, Clos J and Shoreibah M 1982 Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex; J. Atmos. Sci. 39 395–411.

    Article  Google Scholar 

  • Wu R and Juan Fang 2001 Mechanism of balanced flow and frontogenesis; Adv. Atmos. Sci. 18 323–334.

    Article  Google Scholar 

  • Wu L, Su H, Fovell G, Wang B, Shen J T, Kahn B H, Hristova-Veleva S M, Lambrigtsen B H, Fetzer E J and Jiang J H 2012 Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate; Geophys. Res. Lett. 39 L20809, https://doi.org/10.1029/2012GL053546.

    Article  Google Scholar 

  • Wu Y, Chen S, Li W, Fang R and Liu H 2020 Relative vorticity is the major environmental factor controlling tropical cyclone intensification over the Western North Pacific; Atmos. Res. 237 104874, https://doi.org/10.1016/j.atmosres.2020.104874.

    Article  Google Scholar 

  • Xie Y, Wu G, Liu Y, Huang J and Nie H 2021 A dynamic and thermodynamic coupling view of the linkages between Eurasian cooling and Arctic warming; Clim. Dyn., https://doi.org/10.1007/s00382-021-06029-8.

    Article  Google Scholar 

  • Yan Z, Ge X, Peng M and Li T 2019 Does monsoon gyre always favour tropical cyclone rapid intensification?; Quart. J. Roy. Meteorol. Soc. 145 2685–2697.

    Article  Google Scholar 

  • Yu C L, Didlake A C, Kepert J D and Zhang F 2021 Investigating axisymmetric and asymmetric signals of secondary eyewall formation using observations-based modeling of the tropical cyclone boundary layer; J. Geophys. Res. Atmos. 126 e2020JD034027, https://doi.org/10.1029/2020JD034027.

    Article  Google Scholar 

  • Zhang D L and Chen H 2012 Importance of the upper-level warm core in the rapid intensification of a tropical cyclone; Geophys. Res. Lett. 39(2), https://doi.org/10.1029/2011GL050578.

  • Zhang R, Huangfu J and Hu T 2019 Dynamic mechanism for the evolution and rapid intensification of Typhoon Hato (2017); Atmos. Sci. Lett. 20(8) e930.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr Amit Kumar Patra and Prof V K Dadhwal, Directors, NARL, and IIST, for their support and guidance. The authors are also grateful to the Space Applications Centre, Ahmedabad, for providing SCATSAT1 scatterometer data. They also would like to thank KNMI for distributing ASCAT data and the Global Tropical Moored Buoy Array Project Office by NOAA Pacific Marine Environmental Laboratory (PMEL) for RAMA buoy data. The authors also acknowledge Remote Sensing Systems for Windsat data and are grateful to NCAR for providing the WRF model and WRFDA modelling system. Finally, the authors are thankful to NCEP and NCAR for providing GFS and GDAS radiance datasets for generating high-resolution mesoscale analysis.

Author information

Authors and Affiliations

Authors

Contributions

AM: Simulations, data analysis, visualisation, writing initial manuscript draft; AK: conception, manuscript draft revision, supervision; JB: data assimilation experiments, manuscript draft revision, supervision; KS: methodology, analysis manuscript draft revision, supervision; AP: visualisation; GK: manuscript draft revision, supervision; and RG: manuscript draft revision, supervision.

Corresponding author

Correspondence to Amit Kesarkar.

Additional information

Communicated by Parthasarathi Mukhopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munsi, A., Kesarkar, A., Bhate, J. et al. Simulated dynamics and thermodynamics processes leading to the rapid intensification of rare tropical cyclones over the North Indian Oceans. J Earth Syst Sci 131, 211 (2022). https://doi.org/10.1007/s12040-022-01951-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01951-9

Keywords

Navigation