Skip to main content
Log in

Geochemistry and mineral composition of lamprophyre dikes, central Iran: implications for petrogenesis and mantle evolution

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Late Proterozoic–Early Cambrian magmatic rocks that range in composition from mafic to felsic have intruded into the Hour region of the central Iranian micro-continent. The Hour lamprophyres are alkaline, being characterized by low contents of \(\hbox {SiO}_{2}\) and high \(\hbox {TiO}_{2}\), Mg# values, high contents of compatible elements, and are enriched in LREE and LILE but depleted in HFSE. Mineral chemistry studies reveal that the lamprophyres formed within a temperature range of \(\sim \)1200\(^{\circ }\) to \(1300^{\circ }\hbox {C}\) and relatively moderate pressure in subvolcanic levels. The Hour lamprophyres have experienced weak fractional crystallization and insignificant crustal contamination with more primitive mantle signatures. They were derived from low degree partial melting (1–5%) of the enriched mantle characterized by phlogopite/amphibole bearing lherzolite in the spinel-garnet transition zone at 75–85 km depth, and with an addition of the asthenospheric mantle materials. We infer the Hour lamprophyres to be part of the alkaline rock spectrum of the Tabas block and their emplacement, together with that of other alkaline complexes in the central Iran, was strongly controlled by pre-existing crustal weakness followed by the asthenosphere-lithospheric mantle interaction during the Early Cambrian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahijado A, Casillas R and Hernandez-Pacheco A 2001 The dyke swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain); J. Asian Earth Sci. 19 333–345.

    Article  Google Scholar 

  • Alavi M 1991 Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran; GSA Bull. 103 983–992.

    Article  Google Scholar 

  • Amel N 2008 Petrology and petrogenesis of Plio-Quaternary magmatic rocks of Azerbaijan-NW Iran; PhD thesis, University of Tabriz, Iran, 188p.

  • Andronikov A V and Foley S F 2001 Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area; Chem. Geol.  175 291–305.

    Article  Google Scholar 

  • Aoki K I and Shiba I 1973 Pyroxenes from lherzolite inclusions of Itinome-gata, Japan; Lithos 6 41–51.

    Article  Google Scholar 

  • Ayers J 1998 Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones; Contrib. Mineral. Petrol. 132 390–404.

    Article  Google Scholar 

  • Barry T L, Saunders A D, Kempton P D, Windley B F, Pringle M S, Dorjnamjaa D and Saandar S 2003 Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources; J. Petrol. 44 55–91.

    Article  Google Scholar 

  • Berberian M and King G C P 1981 Towards a paleogeography and tectonic evolution of Iran; Can. J. Earth Sci.  18 210–265.

    Article  Google Scholar 

  • Bergmann 1987 Lamproites and other K-rich igneous rocks: review of their occurrence, mineralogy and geochemistry; In: Alkaline Igneous Rocks (eds) Fitton J G and Upton B G J, Geol. Soc. London Spec. Publ. 30 163–190.

  • Brooks C K and Platt R G 1975 Kaersutite-bearing gabbroic inclusions and the late dike swarm of Kangerdlugssuaq, East Greenland; Min. Mag. 40 259–283.

    Article  Google Scholar 

  • Brown G F and Jackson R D 1979 An overview of the geology of Western Arabia; In: Evolution and Mineralization of the Arabian-Nubian Shield (ed.) Tahoun S A, Inst. Appl. Geol., King Abdulaziz Univ., Jeddah, Bull. 3 3–10.

  • Cornen G 1982 Petrology of the alkaline volcanism of Gorringe Bank (southwest Portugal); Mar. Geol. 47 101–130.

    Article  Google Scholar 

  • Deer W A, Howie R A and Zussman J 1992 An introduction to the rock-forming minerals; Longman Scientific and Technical, Hong Kong, 558p.

  • Foley S 1992 Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas; Lithos 28 435–453.

    Article  Google Scholar 

  • Foley S F, Barth M G and Jenner G A 2000 Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas; Geochim. Cosmochim. Acta 64 933–938.

    Article  Google Scholar 

  • Foley S F, Jackson S E, Freyer B J, Greenouch J D and Jenner G A 1996 Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS; Geochim. Cosmochim. Acta 60 629–638.

    Article  Google Scholar 

  • Förster H 1974 Magmentypen und Erzlagerstätten im Iran; Geol. Rundsch. 63 276–292.

    Article  Google Scholar 

  • Fujimaki H, Tatsumoto M and Aoki K I 1984 Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses; J. Geophys. Res. (Solid Earth) 89 662–672.

    Article  Google Scholar 

  • Furman T and Graham D 1999 Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province; Lithos 48 237–262.

    Article  Google Scholar 

  • Gibson S A, Thompson R N, Dickin A P and Leonardos O H 1995 High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis; Earth Planet. Sci. Lett.  136 149–165.

    Article  Google Scholar 

  • Green D H and Ringwood A E 1970 Mineralogy of peridotitic compositions under upper mantle conditions; Phys. Earth Planet. Inter. 3 359–371.

    Article  Google Scholar 

  • Grégoire M, Moine B N, O’Reilly S Y, Cottin J Y and Giret A 2000 Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate-and carbonate-rich melts (Kerguelen Islands, Indian Ocean); J. Petrol. 41 477–509.

    Article  Google Scholar 

  • Guo F, Fan W, Wang Y and Zhang M 2004 Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt; Lithos  78 291–305.

    Article  Google Scholar 

  • Hassanzadeh J, Stockli D F, Horton B K, Axen G J, Stockli L D, Grove M, Schmitt A K and Walker J D 2008 U-Pb zircon geochronology of Late Neoproterozoic-Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement; Tectonophysics 451 71–96.

    Article  Google Scholar 

  • Hauser N, Matteini M, Omarini R H and Pimentel M M 2010 Constraints on metasomatized mantle under central South America: evidence from Jurassic alkaline lamprophyre dykes from the Eastern Cordillera, NM Argentina; Min. Petrol. 100 153–184.

    Article  Google Scholar 

  • Hofmann A W, Jochum K P, Seufert M and White W M 1986 Nb and Pb in oceanic basalts: new constraints on mantle evolution; Earth Planet. Sci. Lett. 79 33–45.

    Article  Google Scholar 

  • Ionov D A, Griffin W L and O’Reilly S Y 1997 Volatile-bearing minerals and lithophile trace elements in the upper mantle; Chem. Geol. 141 153–184.

    Article  Google Scholar 

  • Jami M, Dunlop A C and Cohen D R 2007 Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran; Econ. Geol. 102 1111–1128.

    Article  Google Scholar 

  • Jiang Y H, Jiang S Y, Ling H F and Ni P 2010 Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China; Min. Petrol.  100 127–151.

    Article  Google Scholar 

  • Kostopoulos D K and James S D 1992 Parameterization of the melting regime of the shallow upper mantle and the effects of variable lithospheric stretching on mantle modal stratification and trace-element concentrations in magmas; J. Petrol. 33 665–691.

    Article  Google Scholar 

  • Leake B E, Woolley A R, Birch W D, Burke E A, Ferraris G, Grice J D, Hawthorne F C, Kisch H J, Krivovichev V G, Schumacher J C and Stephenson N C 1997 Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature; Min. Mag. 68 209–215.

    Article  Google Scholar 

  • Maury R C, Defant M J and Joron J L 1992 Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths; Nature  360 661–663.

    Article  Google Scholar 

  • McKenzie D 1989 Some remarks on the movement of small melt fractions in the mantle; Earth Planet. Sci. Lett. 95 53–72.

    Article  Google Scholar 

  • McKenzie D and O’Nions R K 1991 Partial melt distributions from inversion of rare earth element concentrations; J. Petrol. 32 1021–1091.

    Article  Google Scholar 

  • Miller C H, Schuster R, Klötzli U, Frank W and Purtscheller F 1999 Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis; J. Petrol. 40 1399–1424.

    Article  Google Scholar 

  • Moghadam H S and Stern R J 2014 Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (I) Paleozoic ophiolites; J. Asian Earth Sci. 91 19–38.

    Article  Google Scholar 

  • Moghadam H S and Stern R J 2015 Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites; J. Asian Earth Sci. 100 31–59.

    Article  Google Scholar 

  • Moghadam H S, Li X H, Stern R J, Santos J F, Ghorbani G and Pourmohsen M 2016 Age and nature of 560–520 Ma calc-alkaline granitoids of Biarjmand, northeast Iran: insights into Cadomian arc magmatism in northern Gondwana; Int. Geol. Rev. 58 1492–1509.

    Google Scholar 

  • Molina J F, Scarrow J H, Montero P and Bea F 2009 High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia; Contrib. Mineral. Petrol. 158 69–98.

    Article  Google Scholar 

  • Morimoto N 1988 Nomenclature of pyroxenes; Min. Petrol. 39 55–76.

    Article  Google Scholar 

  • Nisbet E G and Pearce J A 1977 Clinopyroxene composition in Marie lavas from different tectonic settings; Contrib. Mineral. Petrol. 63 149–160.

    Article  Google Scholar 

  • Orejana D, Villaseca C, Billström K and Paterson B A 2008 Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe; Contrib. Mineral. Petrol. 156 477–500.

    Article  Google Scholar 

  • Pearce N J G and Leng M J 1996 The origin of carbonatites and related rocks from the Igaliko dyke swarm, Gardar Province, south Greenland: field, geochemical and C–O–Sr–Nd isotope evidence; Lithos 39 21–40.

  • Ramezani J and Tucker R D 2003 The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics; Am. J. Sci. 303 622–665.

    Article  Google Scholar 

  • Rock N M S 1987 The nature and origin of lamprophyres: an overview; Geol. Soc. London Spec. Publ. 30 191–226.

    Article  Google Scholar 

  • Rock N M S 1991 Lamprophyres; Blackie Publication, Glasgow, 285p.

    Book  Google Scholar 

  • Rossetti F, Nozaem R, Lucci F, Vignaroli G, Gerdes A, Nasrabadi M and Theye T 2015 Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in central Iran, Kuh-e-Sarhangi region (NW Lut Block); J. Asian Earth Sci. 102 24–44.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the continental crust; Treatise on Geochemistry 3, 659p.

    Google Scholar 

  • Sahandi M R 1995 Geological map of Horjand 1:100000, No. 7450; Geological Survey of Iran, Tehran.

  • Samani B 1993 Saghand Formation, a riftogenic unit of upper Precambrian in central Iran; J. Geosci. 6 32–45.

    Google Scholar 

  • Samani B 1998 Precambrian metallogeny in central Iran; Scientific Bulletin of the Atomic Energy Organization of Iran 17 1–16.

    Google Scholar 

  • Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K and Pécskay Z 2004 Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: A review; Tectonophysics 393 43–62.

    Article  Google Scholar 

  • Şengör A M C, Cin A, Rowley D B and Shangyou N 1991 Magmatic evolution of the Tethysides: A guide to reconstruction of collage history; Palaeogeogr. Palaeoclimatol. Palaeoecol. 87 411–440.

    Article  Google Scholar 

  • Şengör A M C, Natal’In B A and Burtman V S 1993 Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia; Nature  364 299–307.

    Article  Google Scholar 

  • Soesoo A 1997 A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT-estimations; GFF 119 55–60.

    Article  Google Scholar 

  • Stolz A J, Jochum K P, Spettel B and Hofmann A W 1996 Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts; Geology 24 587–590.

    Article  Google Scholar 

  • Stosch H G, Romer R L, Daliran F and Rhede D 2011 Uranium-lead ages of apatite from iron oxide ores of the Bafq district, East-Central Iran; Miner. Deposita 46 9–21.

    Article  Google Scholar 

  • Su H M, Jiang S Y, Zhang D Y and Wu X K 2017 Partial melting of subducted sediments produced Early Mesozoic calc-alkaline lamprophyres from northern Guangxi Province, south China; Sci. Rep. 7 4864.

    Article  Google Scholar 

  • Sun S S and McDonough W S 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes; Geol. Soc. London Spec. Publ. 42 313–345.

    Article  Google Scholar 

  • Tappe S, Foley S F, Jenner G A, Heaman L M, Kjarsgaard B A, Romer R L, Stracke A, Joyce N and Hoefs J 2006 Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton; J. Petrol. 47 1261–1315.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks; Blackwell Scientific Publications.

  • Verdel C, Wernicke B P, Hassanzadeh J and Guest B 2011 A Paleogene extensional arc flare-up in Iran; Tectonics 30(3), https://doi.org/10.1029/2010TC002809.

  • Winchester J A and Floyd P A 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements; Chem. Geol. 20 325–343.

    Article  Google Scholar 

  • Woolley A R, Bergman S C, Edgar A D, Le Bas M J, Mitchell R H, Rock N M S and Smith B H S 1996 Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks; Can. Min. 34 175–186.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Leon E Long for proof reading and editing the revised manuscript. We would like to thank the anonymous reviewers for their in-depth review and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Raeisi.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeisi, D., Gholoizade, K., Nayebi, N. et al. Geochemistry and mineral composition of lamprophyre dikes, central Iran: implications for petrogenesis and mantle evolution. J Earth Syst Sci 128, 74 (2019). https://doi.org/10.1007/s12040-019-1110-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1110-0

Keywords

Navigation