Skip to main content
Log in

Deciphering the impact of pulsatile input in the population-level synchrony of the Hes1 oscillators

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Cell-to-cell communication via different signalling pathways often results in population-level synchronization of certain gene expressions in noisy cellular environments organized. How exactly such synchronization is accomplished within a population level remains elusive. Here, we have developed a stochastic kinetic mathematical model by taking the Notch signalling pathway as an example to understand the nature of such kind of synchronization observed for Hes1 (Hairy and enhancer of split-1) gene expression. Our stochastic simulations revealed that the periodic pulsatile input to the intrinsic genetic Hes1-oscillator leads to population-level synchrony by reducing the variability of the parent oscillator. Additionally, we demonstrate how the degree of synchronization can be changed by controlling the network motifs that drive the oscillation of the parent oscillator. Our model further successfully identifies the conditions for maximum synchronization. This study indicates how cells within a population filter out fluctuations while living in a heterogeneous cellular environment.

Graphical abstract

A stochastic kinetic model is developed to investigate the population-level synchronization of oscillatory gene expression that occurs in a noisy cellular environment. The study unravels that pulsatile input reduces variability to orchestrate synchronization of the intrinsic oscillator and highlights how cells filter out fluctuations in heterogeneous cellular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Levine J H, Lin Y and Elowitz M B 2013 Functional Roles of Pulsing in Genetic Circuits Science (80-.) 342 1193

  2. Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y and Matsuda M 2015 Intercellular Propagation of Extracellular Signal-Regulated Kinase Activation Revealed by in Vivo Imaging of Mouse Skin Elife 4 e05178

    PubMed  Google Scholar 

  3. Isomura A and Kageyama R 2014 Ultradian Oscillations and Pulses: Coordinating Cellular Responses and Cell Fate Decisions Development 141 3627

    CAS  PubMed  Google Scholar 

  4. Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, et al. 2013 Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors Science (80-). 342 1203

    Article  CAS  ADS  Google Scholar 

  5. Jiang Y, Aerne B L, Smithers L, Haddon C, Ish-Horowicz D and Lewis J 2000 Notch Signalling and the Synchronization of the Somite Segmentation Clock Nature 408 475

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Purvis J E and Lahav G 2013 Encoding and Decoding Cellular Information through Signaling Dynamics Cell 152 945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashall L, Horton C A, Nelson D E, Paszek P, Harper C V, Sillitoe K, Ryan S, Spiller D G, Unitt J F, Broomhead D S, Kell D B, Rand D A, Sée V and White M R H 2009 Pulsatile Stimulation Determines Timing and Specificity of NF-ΚB-Dependent Transcription Science (80-.) 324 242

  8. Albeck J G, Mills G B and Brugge J S 2013 Frequency-Modulated Pulses of ERK Activity Transmit Quantitative Proliferation Signals Mol. Cell 49 249

    Article  CAS  PubMed  Google Scholar 

  9. Kaise T and Kageyama R 2021 Hes1 Oscillation Frequency Correlates with Activation of Neural Stem Cells Gene. Expr. Patterns 40 119170

    Article  CAS  PubMed  Google Scholar 

  10. Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, et al. 2006 Real-Time Imaging of the Somite Segmentation Clock: Revelation of Unstable Oscillators in the Individual Presomitic Mesoderm Cells Proc. Natl. Acad. Sci. 103 1313

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Bone R A, Bailey C S L, Wiedermann G, Ferjentsik Z, Appleton P L, Murray P J, Maroto M and Dale J K 2014 Spatiotemporal Oscillations of Notch1, Dll1 and NICD Are Coordinated across the Mouse PSM Development 141 4806

  12. Rausenberger J, Fleck C, Timmer J and Kollmann M 2009 Signatures of Gene Expression Noise in Cellular Systems Prog. Biophys. Mol. Biol. 100 57

  13. Eldar A and Elowitz M B 2010 Functional Roles for Noise in Genetic Circuits Nature 467 167

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Isomura A, Ogushi F, Kori H and Kageyama R 2017 Optogenetic Perturbation and Bioluminescence Imaging to Analyze Cell-to-Cell Transfer of Oscillatory Information Genes Dev. 31 524

    CAS  PubMed  Google Scholar 

  15. Singh A 2014 Transient Changes in Intercellular Protein Variability Identify Sources of Noise in Gene Expression Biophys. J. 107 2214

  16. Thomas P 2019 Intrinsic and Extrinsic Noise of Gene Expression in Lineage Trees Sci. Rep. 9 474

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Sherman M S, Lorenz K, Lanier M H and Cohen B A 2015 Cell-to-Cell Variability in the Propensity to Transcribe Explains Correlated Fluctuations in Gene Expression Cell Syst. 1 315

    CAS  PubMed  Google Scholar 

  18. Niepel M, Spencer S L and Sorger P K 2009 Non-Genetic Cell-to-Cell Variability and the Consequences for Pharmacology Curr. Opin. Chem. Biol. 13 556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kageyama R, Ohtsuka T, Shimojo H and Imayoshi I 2008 Dynamic Notch Signaling in Neural Progenitor Cells and a Revised View of Lateral Inhibition Nat. Neurosci. 11 1247

    Article  CAS  PubMed  Google Scholar 

  20. Shimojo H, Ohtsuka T and Kageyama R 2008 Oscillations in Notch Signaling Regulate Maintenance of Neural Progenitors Neuron 58 52

    Article  CAS  PubMed  Google Scholar 

  21. Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K and Kageyama R 2007 Ultradian Oscillations of Stat, Smad, and Hes1 Expression in Response to Serum Proc. Natl. Acad. Sci. 104 11292

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Gratton M-O, Torban E, Jasmin S B, Theriault F M, German M S and Stifani S 2003 Hes6 Promotes Cortical Neurogenesis and Inhibits Hes1 Transcription Repression Activity by Multiple Mechanisms Mol. Cell. Biol. 23 6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sengupta D and Kar S 2016 Unraveling the Differential Dynamics of Developmental Fate in Central and Peripheral Nervous Systems Sci. Rep. 6 36397

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Novák B and Tyson J J 2008 Design Principles of Biochemical Oscillators Nat. Rev. Mol. Cell Biol. 9 981

    Article  PubMed  PubMed Central  Google Scholar 

  25. Momiji H and Monk N A M 2008 Dissecting the Dynamics of the Hes1 Genetic Oscillator J. Theor. Biol. 254 784

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Jensen M, Sneppen K and Tiana G 2003 Sustained Oscillations and Time Delays in Gene Expression of Protein Hes1 FEBS Lett. 541 176

  27. Hirata H 2002 Oscillatory Expression of the BHLH Factor Hes1 Regulated by a Negative Feedback Loop Science (80-.) 298 840

  28. Buscarlet M, Hermann R, Lo R, Tang Y, Joachim K and Stifani S 2009 Cofactor-Activated Phosphorylation Is Required for Inhibition of Cortical Neuron Differentiation by Groucho/TLE1 PLoS One 4 e8107

  29. Gasperowicz M and Otto F 2005 Mammalian Groucho Homologs: Redundancy or Specificity? J. Cell. Biochem. 95 670

    Article  CAS  PubMed  Google Scholar 

  30. Nuthall H N, Joachim K, Palaparti A and Stifani S A 2002 Role for Cell Cycle-Regulated Phosphorylation in Groucho-Mediated Transcriptional Repression J. Biol. Chem. 277 51049

    Article  CAS  PubMed  Google Scholar 

  31. Nuthall H N, Joachim K and Stifani S 2004 Phosphorylation of Serine 239 of Groucho/TLE1 by Protein Kinase CK2 Is Important for Inhibition of Neuronal Differentiation Mol. Cell. Biol. 24 8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jhas S, Ciura S, Belanger-Jasmin S, Dong Z, Llamosas E, Theriault F M, Joachim K, Tang Y, Liu L, Liu J and Stifani S 20006 Hes6 Inhibits Astrocyte Differentiation and Promotes Neurogenesis through Different Mechanisms J. Neurosci. 26 11061

  33. Belanger-Jasmin S, Llamosas E, Tang Y, Joachim K, Osiceanu A-M, Jhas S and Stifani S 2007 Inhibition of Cortical Astrocyte Differentiation by Hes6 Requires Amino- and Carboxy-Terminal Motifs Important for Dimerization and Phosphorylation J. Neurochem. 103 2022

    Article  CAS  PubMed  Google Scholar 

  34. Sengupta D and Kar S 2018 Alteration in MicroRNA Expression Governs the Nature and Timing of Cellular Fate Commitment ACS Chem. Neurosci. 9 725

    Article  CAS  PubMed  Google Scholar 

  35. Giri A, Sengupta D and Kar S 2021 Deciphering the Role of Fluctuation Dependent Intercellular Communication in Neural Stem Cell Development ACS Chem. Neurosci. 12 2360

    Article  CAS  PubMed  Google Scholar 

  36. Bernard S, Čajavec B, Pujo-Menjouet L, Mackey M C and Herzel H 2006 Modelling Transcriptional Feedback Loops: The Role of Gro/TLE1 in Hes1 Oscillations Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 1155

  37. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Yoshikawa K and Kageyama R 2002 Oscillatory Expression of the BHLH Factor Hes1 Regulated by a Negative Feedback Loop Science 298 840

  38. Gillespie D T 1976 A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions J. Comput. Phys. 22 403

    Article  MathSciNet  CAS  ADS  Google Scholar 

  39. Gillespie D T 1977 Exact Stochastic Simulation of Coupled Chemical Reactions J. Phys. Chem. 81 2340

    Article  CAS  Google Scholar 

  40. Phillips N E, Mandic A, Omidi S, Naef F and Suter D M 2019 Memory and Relatedness of Transcriptional Activity in Mammalian Cell Lineages Nat. Commun. 10 1208

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, et al. 1998 Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography Phys. Rev. Lett. 81 3291

    Article  CAS  ADS  Google Scholar 

  42. Mondragón-Palomino O, Danino T, Selimkhanov J, Tsimring L and Hasty J 2011 Entrainment of a Population of Synthetic Genetic Oscillators Science (80-.) 333 1315

  43. Lin Y, Li Y, Crosson S, Dinner A R and Scherer N F 2012 Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle PLoS Comput. Biol. 8 e1002778

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Kellogg R A and Tay S 2015 Noise Facilitates Transcriptional Control under Dynamic Inputs Cell 160 381

    Article  CAS  PubMed  Google Scholar 

  45. Jiménez A, Lu Y, Jambhekar A and Lahav G 2022 Principles, Mechanisms and Functions of Entrainment in Biological Oscillators Interface Focus 12 20210088

    Google Scholar 

  46. Nelson D E, Ihekwaba A E C, Elliott M, Johnson J R, Gibney C A, Foreman B E, Nelson G, See V, Horton C A, Spiller D G, Edwards S W, McDowell H P, Unitt J F, Sullivan E, Grimley R, Benson N, Broomhead D, Kell D B and White M R H 2004 Oscillations in NF-ΚB Signaling Control the Dynamics of Gene Expression Science (80-.) 306 704

  47. Bier M, Bakker B M and Westerhoff H V 2000 How Yeast Cells Synchronize Their Glycolytic Oscillations: A Perturbation Analytic Treatment Biophys. J. 78 1087

  48. Gustavsson A-K, Adiels C B, Mehlig B and Goksör M 2015 Entrainment of Heterogeneous Glycolytic Oscillations in Single Cells Sci. Rep. 5 9404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan J and Goldbeter A 2019 Robust Synchronization of the Cell Cycle and the Circadian Clock through Bidirectional Coupling J. R. Soc. Interface 16 20190376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jensen M H and Krishna S 2012 Inducing Phase-Locking and Chaos in Cellular Oscillators by Modulating the Driving Stimuli FEBS Lett. 586 1664

    CAS  PubMed  Google Scholar 

  51. Heltberg M, Kellogg R A, Krishna S, Tay S and Jensen M H 2016 Noise Induces Hopping between NF-ΚB Entrainment Modes Cell Syst. 3 532

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to UGC (Ref. No: 19-06/2016(i) EU-V) and IRCC IIT Bombay for providing the fellowship to (AG). This work is supported by the funding agency SERB, India (Grant no. CRG/2019/002640 and Grant no. MTR/2020/000261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amitava Giri or Sandip Kar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to Prof. S.P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 803 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, A., Kar, S. Deciphering the impact of pulsatile input in the population-level synchrony of the Hes1 oscillators. J Chem Sci 135, 71 (2023). https://doi.org/10.1007/s12039-023-02177-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02177-y

Keywords

Navigation