Skip to main content
Log in

Palladium(II) complex bearing benzothiazole based O,N,S donor pincer ligand: Study of in-vitro cytotoxicity, interaction with CT-DNA and BSA protein

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new palladium(II) complex, [Pd(LSEt)Cl] (C1) with benzothiazole based ONS donor pincer ligand (HLSEt) was synthesized (where, HLSEt = 2-(benzothiazol-2-yl)-6-(((2-(ethylthio)phenyl)imino)methyl)phenol). Interaction of C1 with CT DNA was investigated, and its binding constant was found to be 4.0×105 M−1. The proficiency of ethidium bromide (EB) displacement from its EB-CTDNA complex by C1 was performed by the fluorescence quenching method, and Stern-Volmer quenching constant (Ksv) was found to be 4.3×105 M−1. Similarly, the interaction of C1 with BSA protein was investigated by UV-Vis and fluorescence methods. The apparent association constant (Ka) and Ksv were determined (Ka = 2.8×104 M−1 and Ksv = 5.5×104 M−1). In vitro cytotoxicity of the complex, [Pd(LSEt)Cl] (C1), towards human gastric cancer cell lines (AGS) was assessed by the MTT assay method. The half maximal inhibitory concentration (IC50) of C1 (9.55 ± 1.23 µM) towards AGS cancer lines was found to be lower than cisplatin (23.13 ± 1.03 µM).

Graphical abstract

Herein, new palladium(II) complex, [Pd(LSEt)Cl] (C1) with benzothiazole-based ONS donor pincer ligand (HLSEt) was synthesized and characterized by several spectroscopic techniques. Interaction of C1 with CT DNA and BSA protein was investigated by UV-Vis and fluorescence methods. In vitro cytotoxicity of the complex toward human gastric cancer cell lines (AGS) was evaluated by the MTT assay method. The half maximal inhibitory concentration (IC50) of the palladium(II) complex (9.55±1.23 µM) was found to be less compared to cisplatin (23.13±1.03 µM) towards AGS cancer lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Naghavi M, Abajobir A A, Abbafati C, Abbas K M, Abd-Allah F, Abera S F, et al. 2017 Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016 Lancet 390 1151

    Article  Google Scholar 

  2. Helleday T, Petermann E, Lundin C, Hodgson B and Sharma R A 2008 DNA repair pathways as targets for cancer therapy Nat. Rev. Cancer 8 193

    Article  CAS  PubMed  Google Scholar 

  3. Fojta M, Daňhel A, Havran L and Vyskočil V 2016 Recent progress in electrochemical sensors and assays for DNA damage and repair TRAC - Trends Anal. Chem. 79 160

    Article  CAS  Google Scholar 

  4. Zmejkovski B B, Savić A, Poljarević J, Pantelić N, Aranđelović S, Radulović S, et al. 2014 Synthesis, characterization and in vitro antitumor activity of new palladium (II) complexes with (S, S)-R2edda-type esters Polyhedron 80 106

    Article  CAS  Google Scholar 

  5. Koley A P, Nirmala R, Prasad L S, Ghosh S and Manoharan P T 1992 Studies on gold(II) complexes with hard and soft donor ligands. 3. Complexes with N-(2-pyridylmethyl)-2-mercaptoaniline Inorg. Chem. 31 1764

    Article  CAS  Google Scholar 

  6. Jana M S, Pramanik A K, Kundu S, Sarkar D, Jana S and Mondal T K 2013 Synthesis, X-ray structure, spectroscopic and DFT study of cis-[Ru(PPh3)(L)X2] complexes (X= Cl, Br, I and NCS)(L= 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole) Inorg. Chim. Acta 394 583

    Article  CAS  Google Scholar 

  7. Koley A P, Purohit S, Prasad L S, Ghosh S and Manoharan P T 1992 Studies on gold(II) complexes with hard and soft donor ligands. 2. Complexes with o-(methylthio)aniline and 1, 2-bis((o-aminophenyl)thio)ethane Inorg. Chem. 31 305

    Article  CAS  Google Scholar 

  8. Sinha S, Chakraborty M, Pramanik N R, Raychaudhuri T K, Mondal T K, Sarkar D, et al. 2013 Dimer formation by symbiotic donor–acceptor interaction between two molecules of a specially designed dioxomolybdenum(VI) complex containing both donor and acceptor centers–A structural, spectroscopic and DFT study Polyhedron 55 192

    Article  CAS  Google Scholar 

  9. Barton J K 1986 Metals and DNA: molecular left-handed complements Science 233 727

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, Powell D and Nicholas K M 2007 Tripodal bis(imidazole)thioether copper(I) complexes: Mimics of the CuM site of copper hydroxylase enzymes Inorg. Chem. 46 7789

    Article  CAS  PubMed  Google Scholar 

  11. Berreau L M 2006 Bioinorganic Chemistry of Group 12 Complexes Supported by Tetradentate Tripodal Ligands Having Internal Hydrogen‐Bond Donors. Eur. J. Inorg. Chem. 273

  12. Akdi K, Vilaplana R A, Kamah S and González-Vílchez F 2005 Effects of Tris and Hepes buffers on the interaction of palladium–diaminopropane complexes with DNA J. Inorg. Biochem. 99 1360

    Article  CAS  PubMed  Google Scholar 

  13. Prabhakaran R, Renukadevi S V, Karvembu R, Huang R, Mautz J, Huttner G, et al. 2008 Structural and biological studies of mononuclear palladium(II) complexes containing N-substituted thiosemicarbazones Eur. J. Med. Chem. 43 268

    Article  CAS  PubMed  Google Scholar 

  14. Balasubramanian K P, Karvembu R, Prabhakaran R, Chinnusamy V and Natarajan K 2007 Synthesis, spectral, catalytic and antimicrobial studies of PPh3/AsPh3 complexes of Ru(II) with dibasic tridentate O, N S donor ligands Spectrochim. Acta A 68 50

    Article  CAS  Google Scholar 

  15. Vyas K M, Joshi R G, Jadeja R N, Prabha C R and Gupta V K 2011 Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands Spectrochim Acta A 84 256

    Article  CAS  Google Scholar 

  16. Rosu T, Pahontu E, Maxim C, Georgescu R, Stanica N and Gulea A 2011 Some new Cu(II) complexes containing an ON donor Schiff base: synthesis, characterization and antibacterial activity Polyhedron 30 154

    Article  CAS  Google Scholar 

  17. Thomas F 2007 Ten years of a biomimetic approach to the copper(II) radical site of galactose oxidase Eur. J. Inorg. Chem. 2379

  18. Wheate N J, Walker S, Craig G E and Oun R 2010 The status of platinum anticancer drugs in the clinic and in clinical trials Dalton Trans. 39 8113

    Article  CAS  PubMed  Google Scholar 

  19. Monneret C 2011 Platinum anticancer drugs. From serendipity to rational design Ann. Pharm. Fr. 69 286

    Article  CAS  PubMed  Google Scholar 

  20. Sherman S E, Gibson D, Wang A H and Lippard S J 1988 Crystal and molecular structure of cis-[Pt(NH3)2[d(pGpG)]], the principal adduct formed by cis-diamminedichloroplatinum(II) with DNA J. Am. Chem. Soc. 110 7368

    Article  CAS  Google Scholar 

  21. Windsor R E, Strauss S J, Kallis C, Wood N E and Whelan J S 2012 Germline Genetic Polymorphisms May Influence Chemotherapy Response and Disease Outcome in Osteosarcoma Cancer 118 1856

    Article  CAS  PubMed  Google Scholar 

  22. Alam M N and Huq F 2016 Comprehensive review on tumour active palladium compounds and structure–activity relationships Coord. Chem. Rev. 316 36

    Article  CAS  Google Scholar 

  23. Caires A C 2007 Recent advances involving palladium(II) complexes for the cancer therapy Anti-Cancer Agents Med. Chem. 7 484

    Article  CAS  Google Scholar 

  24. Huang B X, Kim H Y and Dass C 2004 Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry J. Am. Soc. Mass Spectrom. 15 1237

    Article  CAS  PubMed  Google Scholar 

  25. Shahabadi N, Maghsudi M, Kiani Z and Pourfoulad M 2011 Multispectroscopic studies on the interaction of 2-tert-butylhydroquinone (TBHQ), a food additive, with bovine serum albumin Food Chem. 124 1063

    Article  CAS  Google Scholar 

  26. Hu Y J, Liu Y, Shen X S, Fang X Y and Qu S S 2007 Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin J. Mol. Struct. 738 143

    Article  Google Scholar 

  27. Kundu S, Pramanik A K, Mondal A S and Mondal T K 2016 Ni(II) and Pd(II) complexes with new N, O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation J. Mol. Struct. 1116 1

    Article  CAS  Google Scholar 

  28. Kundu S, Biswas S, Mondal A S, Roy P and Mondal T K 2015 Template synthesis of square-planar Ni(II) complexes with new thiophene appended Schiff base ligands: Characterization, X-ray structure and DFT calculation J. Mol. Struct. 1100 27

    Article  CAS  Google Scholar 

  29. Mondal A S, Jana M S, Manna C K, Naskar R and Mondal T K 2018 Synthesis of a zinc(II) complex with hexadentate N4S2 donor thioether ligand: X-ray structure, DNA binding study and DFT computation J. Mol. Struct. 1164 94

    Article  CAS  Google Scholar 

  30. Mondal S, Mondal T K, Rajesh Y, Mandal M and Sinha C R 2018 Copper(II)-sulfonamide Schiff base complexes: Structure, biological activity and theoretical interpretation Polyhedron 151 344

    Article  CAS  Google Scholar 

  31. Jana M S, Pramanik A K, Sarkar D, Biswas S and Mondal T K 2014 Octahedral Mn(II) complex with new NNO donor Schiff base ligand: Synthesis, structure, photoluminescent behavior and computational studies Polyhedron 81 66

    Article  CAS  Google Scholar 

  32. Bhosle A A, Banerjee M, Barooah N, Bhasikuttan A C, Kadu K, Ramanan S R and Chatterjee A 2022 ESIPT-active hydroxybenzothiazole-picolinium@CB[7]-HAp NPs based supramolecular sensing assembly for spermine, spermidine and cadaverine: Application in monitoring cancer biomarkers and food spoilage J. Photochem. Photobiol. A: Chem. 426 113770

    Article  CAS  Google Scholar 

  33. Sheldrick G M 2008 A short history of SHELX Acta Cryst. A64 112

    Article  Google Scholar 

  34. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C71 3

    Google Scholar 

  35. Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  36. Lee C, Yang W and Parr R G 1998 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    Article  Google Scholar 

  37. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, et al. 2009 Gaussian 09, revision D.01 (Gaussian Inc.: Wallingford, CT)

    Google Scholar 

  38. Hay J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg J. Chem. Phys. 82 270

    Article  CAS  Google Scholar 

  39. Wadt W R and Hay J 1985 Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi J. Chem. Phys. 82 284

    Article  CAS  Google Scholar 

  40. Hay P J and Wadt W R 1985 Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au including the Outermost Core Orbitals J. Chem. Phys. 82 299

    Article  CAS  Google Scholar 

  41. O’Boyle N M, Tenderholt A L and Langner K M 2008 cclib: a library for package-independent computational chemistry algorithms J. Comput. Chem. 29 839

    Article  PubMed  Google Scholar 

  42. Bauernschmitt R and Ahlrichs R 1996 Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory Chem. Phys. Lett. 256 454

    Article  CAS  Google Scholar 

  43. Stratmann R E, Scuseria G E and Frisch M J 1998 An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules J. Chem. Phys. 109 8218

    Article  CAS  Google Scholar 

  44. Casida M E, Jamorski C, Casida K C and Salahub D R 1998 Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold J. Chem. Phys. 108 4439

    Article  CAS  Google Scholar 

  45. Barone V and Cossi M 1998 Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model J. Phys. Chem. A 102 1995

    Article  CAS  Google Scholar 

  46. Cossi M and Barone V 2001 Time-dependent density functional theory for molecules in liquid solutions J. Chem. Phys. 115 4708

    Article  CAS  Google Scholar 

  47. Cossi M, Rega N, Scalmani G and Barone V 2003 Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model J. Comput. Chem. 24 669

    Article  CAS  PubMed  Google Scholar 

  48. Anjomshoa M, Hadadzadeh H, Torkzadeh-Mahani M, Fatemi S J, Adeli-Sardou M, Rudbari H A and Nardo V M 2015 A mononuclear Cu(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: Synthesis, crystal structure, DNA- and BSA-binding, molecular modeling, and anticancer activity against MCF-7, A-549, and HT-29 cell lines Eur. J. Med. Chem. 96 66

    Article  CAS  PubMed  Google Scholar 

  49. Quiming N S, Vergel R B, Nicolas M G and Villanueva J A 2005 Interaction of Bovine Serum Albumin and Metallothionein J. Health Sci. 51 8

    Article  CAS  Google Scholar 

  50. Riss T L, Moravec R A, Niles A L, Duellman S, Benink H A, Worzella T J and L. Minor 2013 Cell viability assays. Assay Guidelines manuals

  51. Pattanayak P, Parua S P, Patra D, Lai C K, Brandao P, Felix V and Chattopadhyay S 2015 Ruthenium and palladium complexes incorporating amino-azo-phenol ligands: Synthesis, characterization, structure and reactivity Inorg. Chim. Acta 429 122

    Article  CAS  Google Scholar 

  52. Manna C K, Naskar R, Bera B, Das A and Mondal T K 2021 A new palladium(II) phosphino complex with ONS donor Schiff base ligand: synthesis, characterization and catalytic activity towards Suzuki-Miyaura cross-coupling reaction J. Mol. Struct. 1237 130322

    Article  CAS  Google Scholar 

  53. Tamizh M M, Cooper B F T, Macdonald C L B and Karvembu R 2013 Palladium(II) complexes with salicylideneimine based tridentate ligand and triphenylphosphine: Synthesis, structure and catalytic activity in Suzuki-Miyaura cross coupling reactions Inorg. Chim. Acta 394 391

    Article  Google Scholar 

  54. Kalaivani P, Prabhakaran R, Kaveri M V, Huang R, Staple R J and Natarajan K 2013 Synthesis, spectral, X-ray crystallography, electrochemistry, DNA/protein binding and radical scavenging activity of new palladium(II) complexes containing triphenylarsine Inorg. Chim. Acta 405 415

    Article  CAS  Google Scholar 

  55. Zhang C X and Lippard S J 2003 New metal complexes as potential therapeutics Curr. Opin. Chem. Biol. 7 481

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q L, Liu J G, Chao H, Xue G Q and Ji L N 2001 DNA-binding and photocleavage studies of cobalt(III) polypyridyl complexes:[Co(phen)2IP]3+ and [Co(phen)2PIP]3+ J. Inorg. Biochem. 83 49

    Article  CAS  PubMed  Google Scholar 

  57. Tanious F A, Ding D, Patrick D A, Bailly C, Tidwell R R and Wilson W D 2000 Effects of compound structure on carbazole dication-DNA complexes: tests of the minor-groove complex models Biochemistry 39 12091

    Article  CAS  PubMed  Google Scholar 

  58. Akdi K, Vilaplana R A, Kamah S and Gonzalez-Vilchez F 2005 Effects of Tris and Hepes buffers on the interaction of palladium–diaminopropane complexes with DNA J. Inorg. Biochem. 99 1360

    Article  CAS  PubMed  Google Scholar 

  59. Bandyopadhyay N, Basu P, Kumar G S, Guhathakurta B, Singh P and Naskar J P 2017 Biophysical studies on the interaction of a novel oxime based palladium(II) complex with DNA and RNA J. Photochem. Photobiol. B 173 560

    Article  CAS  PubMed  Google Scholar 

  60. Barra C V, Rocha F V, Morel L, Gautier A, Garrido S S, Mauro A E, et al. 2017 DNA binding, topoisomerase inhibition and cytotoxicity of palladium(II) complexes with 1,10-phenanthroline and thioureas Inorg. Chim. Acta 446 54

    Article  Google Scholar 

  61. Nyarko E, Hanada N, Habib A and Tabata M 2004 Fluorescence and phosphorescence spectra of Au(III), Pt(II) and Pd(II) porphyrins with DNA at room temperature Inorg. Chim. Acta 357 739

    Article  CAS  Google Scholar 

  62. Lepecq J B and Paoletti C 1967 A fluorescent complex between ethidium bromide and nucleic acids: physical-chemical characterization J. Mol. Biol. 27 87

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Zhu J, He W, Yang Z, Zhu Y, Li Y, et al. 2006 Oxidative DNA cleavage promoted by multinuclear copper complexes: activity dependence on the complex structure Chem. Eur. J. 12 6621

    Article  CAS  PubMed  Google Scholar 

  64. Ramachandran E, Raja D S, Rath N P and Natarajan K 2013 Role of substitution at terminal nitrogen of 2-oxo-1, 2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the coordination behavior and structure and biological properties of their palladium(II) complexes Inorg. Chem. 52 1504

    Article  CAS  PubMed  Google Scholar 

  65. Raja D S, Bhuvanesh N S P and Natarajan K 2011 Effect of N (4)-phenyl substitution in 2-oxo-1, 2-dihydroquinoline-3-carbaldehyde semicarbazones on the structure, DNA/protein interaction, and antioxidative and cytotoxic activity of Cu(II) complexes Inorg. Chem. 50 12852

    Article  CAS  PubMed  Google Scholar 

  66. Wolfe A, Shimer G H and Mechan T 1987 Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA Biochemistry 26 6392

    Article  CAS  PubMed  Google Scholar 

  67. Paul A, Mistri S, Bhunia A, Manna S, Puschmann H and Manna S C 2016 Synthesis, crystal structure, DFT/TDDFT calculation, photophysical properties and DNA binding studies of morpholino moiety ligand based two Cu(II) complexes in combination with carboxylates RSC Adv. 6 60487

    Article  CAS  Google Scholar 

  68. Shanmugapriya A, Kalaiarasi G, Kalaivani P, Dallemer F and Prabhakaran R 2016 CT-DNA/BSA protein binding and antioxidant studies of new binuclear Pd(II) complexes and their structural characterization Inorg. Chim. Acta 449 107

    Article  CAS  Google Scholar 

  69. Franich A A, Živković M D, Milovanović J, Arsenijević D, Arsenijević A, Milovanović M, et al. 2020 In vitro cytotoxic activities, DNA-and BSA-binding studies of dinuclear palladium(II) complexes with different pyridine-based bridging ligands J. Inorg. Biochem. 210 111158

    Article  CAS  PubMed  Google Scholar 

  70. Ramezanpour A, Karami K, Kharaziha M, Zakariazadeh M, Lipkowski J, Shahpiri A, et al. 2021 A mononuclear PdII complex with Naphcon; crystal structure, experimental and computational studies of the interaction with DNA/BSA and evaluation of anticancer activity Polyhedron 206 115333

    Article  CAS  Google Scholar 

  71. Ayyannan G, Mohanraj M, Gopiraman M, Uthayamalar R, Raja G, Bhuvanesh N, et al. 2020 New Palladium(II) complexes with ONO chelated hydrazone ligand: Synthesis, characterization, DNA/BSA interaction, antioxidant and cytotoxicity Inorg. Chim. Acta 512 119868

    Article  CAS  Google Scholar 

  72. Lakowicz J R 2006 Principles of Fluorescence Spectroscopy 3rd edn. (Springer: New York, USA)

    Book  Google Scholar 

  73. Lakowicz J R 1999 Fluorescence Quenching: Theory and applications, Principles of Fluorescence Spectroscopy (New York: Kluwer Academic/Plenum Publishers) p. 53

  74. Feng X Z, Lin Z, Yang L J, Wang C and Bai C L 1998 Investigation of the interaction between acridine orange and bovine serum albumin Talanta 47 1223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work is financially supported by Science and Engineering Research Board (SERB), New Delhi, India (No. EEQ/2018/000266). UGC, New Delhi, India, is gratefully acknowledged for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to NABENDU MURMU or TAPAN KUMAR MONDAL.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 613 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NASKAR, R., GHOSH, P., MANDAL, S. et al. Palladium(II) complex bearing benzothiazole based O,N,S donor pincer ligand: Study of in-vitro cytotoxicity, interaction with CT-DNA and BSA protein. J Chem Sci 134, 103 (2022). https://doi.org/10.1007/s12039-022-02101-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02101-w

Keywords

Navigation