Skip to main content
Log in

Coupling of pseudoradical centers in the synthesis of oxazine fused-spiroindoline: a two-stage one-step double cyclization

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this research, a MEDT study was performed on the reaction of phenyl nitrile oxide (NO) with N-methyl-2-isocyanoethylindole (MICI), experimentally explored by Xu and coworkers. Based on their report, a step-wise double cyclization takes place on the nitrilium ion (NI) intermediate generated from the reaction of NO and MICI. The result of the CDFT analysis indicated that MICI acts as nucleophile toward NO. The results of the PES analysis suggested that the first step of the reaction leading to the formation of NI is the rate-determining step. Although Xu and coworkers proposed a step-wise mechanism with the formation of a zwitterionic intermediate for the double cyclization on NI, our results ruled out the formation of any stable zwitterionic intermediate. Indeed, this reaction proceeds via a two-stage one-step mechanism, in which the two new single bonds are formed in two stages but from one transition state. The ELF analysis suggested that while the first single bond is formed via the coupling of the pseudoradical centers located on the corresponding carbon atoms, the second single bond is formed from the polarization of the oxygen lone pair toward the carbon atom. IGMH analysis supported the two-stage one-step mechanism of the reaction.

Graphical abstract

A two-stage one-step mechanism is concluded for double cyclization of a nitrilium ion intermediate. The ELF analysis suggests that while the C-C bond is formed via the coupling of the pseudoradical centers, the C-O bond is formed from the polarization of the oxygen lone pair toward the carbon atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Scheme 3
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Domingo L R 2016 Molecular electron density theory: a modern view of reactivity in organic chemistry Molecules 21 1319

    Article  PubMed Central  Google Scholar 

  2. Domingo L R, Ríos-Gutiérrez M and Pérez P 2016 Applications of the conceptual density functional theory indices to organic chemistry reactivity Molecules 21 748

    Article  PubMed Central  Google Scholar 

  3. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 Revealing noncovalent interactions J. Am. Chem. Soc. 132 6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bader R F 1985 Atoms in molecules Acc. Chem. Res. 18 9

    Article  CAS  Google Scholar 

  5. Becke A D and Edgecombe K E 1990 A simple measure of electron localization in atomic and molecular systems J. Chem. Phys. 92 5397

    Article  CAS  Google Scholar 

  6. Domingo L R and Acharjee N 2020 Molecular electron density theory: a new theoretical outlook on organic chemistry (Bentham and Science Singapore) Vol. 5.

  7. Soleymani M 2020 Regio-, diastereo-and enantioselectivity in the synthesis of CF3-containing spiro [pyrrolidin-3, 2′ oxindole] through the organocatalytic [3+ 2] cycloaddition reaction: A molecular electron density theory study J. Fluorine Chem. 109566

  8. Soleymani M, Chegeni M and Mohammadi E 2021 BF3-catalyzed oxa-Diels–Alder reaction of ethyl vinyl sulfide and β-methyl-α-phenylacrolein: a molecular electron density theory study Monatsh. Chem. Chem. Mon. 152 1209

    Article  CAS  Google Scholar 

  9. Zeroual A, Ríos-Gutiérrez M, Salah M, Abdallaoui El Alaoui El and H and Ramon Domingo L, 2019 An investigation of the molecular mechanism, chemoselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-Oxide and 2, 5-dimethyl-2H-[1, 2, 3] diazaphosphole: a MEDT study J. Chem. Sci. 131 1

    Article  CAS  Google Scholar 

  10. Acharjee N and Banerji A 2020 A molecular electron density theory study to understand the interplay of theory and experiment in nitrone-enone cycloaddition J. Chem. Sci. 132 1

    Article  Google Scholar 

  11. Soleymani M and Chegeni Z K 2019 A molecular electron density theory study on the [3+ 2] cycloaddition reaction of 5, 5-dimethyl-1-pyrroline N-oxide with 2-cyclopentenone J. Mol. Graphics Modell. 92 256

    Article  CAS  Google Scholar 

  12. Emamian S, Soleymani M and Moosavi S S 2019 Copper (i)-catalyzed asymmetric aza Diels-Alder reactions of azoalkenes toward fulvenes: a molecular electron density theory study New J. Chem. 43 4765

    CAS  Google Scholar 

  13. Soleymani M 2022 Mechanistic aspects of the Diels-Alder reaction between (E)-N-benzylidene-2, 2-difluoro-1-phenylethenamine and 2-vinyl pyridine: a Molecular Electron Density Theory study Comput. Theor. Chem. 113817

  14. Soleymani M and Emamian S 2020 Regio- and stereochemistry in the aza-Diels–Alder reaction of an azoalkene with furan and 2,3-dihydrofuran: a molecular electron density theory study Struct. Chem. 31 2161–2170

    Article  CAS  Google Scholar 

  15. Domingo L R, Ríos-Gutiérrez M and Aurell M J 2021 Unveiling the regioselectivity in electrophilic aromatic substitution reactions of deactivated benzenes through molecular electron density theory New J. Chem. 45 13626

    Article  CAS  Google Scholar 

  16. Soleymani M and Emamian S 2022 A molecular electron density theory study on the Chichibabin reaction: The origin of regioselectivity J. Mol. Graphics Modell. 108240

  17. Tran N C, Dhondt H, Flipo M, Deprez B and Willand N 2015 Synthesis of functionalized 2-isoxazolines as three-dimensional fragments for fragment-based drug discovery Tetrahedron Lett. 56 4119

    Article  CAS  Google Scholar 

  18. Kumar K A and Jayaroopa P 2013 Isoxazoles: molecules with potential medicinal properties Int. J. Pharm. Chem. Biol. Sci. 3 294

    Google Scholar 

  19. Xu P-W, Yu J-S, Chen C, Cao Z-Y, Zhou F and Zhou J 2019 Catalytic enantioselective construction of spiro quaternary carbon stereocenters ACS Catal. 9 1820

    Article  CAS  Google Scholar 

  20. Rajkumar V, Babu S A and Padmavathi R 2016 Regio-and diastereoselective construction of a new set of functionalized pyrrolidine, spiropyrrolidine and spiropyrrolizidine scaffolds appended with aryl-and heteroaryl moieties via the azomethine ylide cycloadditions Tetrahedron 72 5578

    Article  CAS  Google Scholar 

  21. Zhang Q, Zhang F-M, Zhang C-S, Liu S-Z, Tian J-M, Wang S-H, et al. 2019 Enantioselective synthesis of cis-hydrobenzofurans bearing all-carbon quaternary stereocenters and application to total synthesis of (-)-morphine Nat. Commun. 10 1

    Google Scholar 

  22. Siengalewicz P, Gaich T and Mulzer J 2008 It all began with an error: The nomofungin/communesin story Angew. Chem. Int. Ed. 47 8170

    Article  CAS  Google Scholar 

  23. Dalsgaard P W, Blunt J W, Munro M H, Frisvad J C and Christophersen C 2005 Communesins G and H, New Alkaloids from the Psychrotolerant Fungus Penicillium r ivulum J. Nat. Prod. 68 258

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Xie X, Wang Z, Mei R, Zheng H, Wang X, et al. 2013 Stereoselective Synthesis of Fused Spiroindolines via Tandem Mannich/Intramolecular Aminal Formation J. Org. Chem. 78 1230

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y-Y, Wei Y and Shi M 2019 Catalyst-controlled product selectivity for cycloaddition of bis (indol-3-yl)-allenes to fused spiroindolines and mechanistic studies Org. Lett. 21 8250

    Article  CAS  PubMed  Google Scholar 

  26. Zhu M, Zheng C, Zhang X and You S-L 2019 Synthesis of cyclobutane-fused angular tetracyclic spiroindolines via visible-light-promoted intramolecular dearomatization of indole derivatives J. Am. Chem. Soc. 141 2636

    Article  CAS  PubMed  Google Scholar 

  27. Arai N and Ohkuma T 2019 Stereoselective preparation of methylenecyclobutane-fused angular tetracyclic spiroindolines via photosensitized intramolecular [2+ 2] cycloaddition with allene Tetrahedron Lett. 60 151252

    Article  CAS  Google Scholar 

  28. Wang X-F, Cao W-B, Li H-Y, Xu X-P and Ji S-J 2021 Cascade Reaction of Tryptamine-Derived Isocyanides with Nitrile Oxides: Construction of Oxazine Fused-Spiroindoline Derivatives J. Org. Chem. 86 12597

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y and Truhlar D G 2006 Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers J. Phys. Chem. A 110 5121

    Article  CAS  PubMed  Google Scholar 

  30. Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  31. Gonzalez C and Schlegel H B 1990 Reaction path following in mass-weighted internal coordinates J. Phys. Chem. 94 5523

    Article  CAS  Google Scholar 

  32. Tomasi J and Persico M 1994 Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent Chem. Rev. 94 2027

    Article  CAS  Google Scholar 

  33. Simkin B I A k and Sheĭkhet I I i 1995 Quantum chemical and statistical theory of solutions: a computational approach (Ellis Horwood Series in Physical Chemistry, Prentice Hall)

  34. Barone V, Cossi M and Tomasi J 1998 Geometry optimization of molecular structures in solution by the polarizable continuum model J. Comput. Chem. 19 404

    Article  CAS  Google Scholar 

  35. Cossi M, Barone V, Cammi R and Tomasi J 1996 Ab initio study of solvated molecules: a new implementation of the polarizable continuum model Chem. Phys. Lett. 255 327

    Article  CAS  Google Scholar 

  36. Parr R G and Pearson R G 1983 Absolute hardness: companion parameter to absolute electronegativity J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  37. Parr R G and Weitao Y 1989 Density-Functional Theory of Atoms and Molecules (Oxford University Press)

  38. Parr R G, Szentpaly L v and Liu S 1999 Electrophilicity index J. Am. Chem. Soc. 121 1922

  39. Domingo L R, Pérez P and Ortega D E 2013 Why Do Five-Membered Heterocyclic Compounds Sometimes Not Participate in Polar Diels-Alder Reactions? J. Org. Chem. 78 2462

    Article  CAS  PubMed  Google Scholar 

  40. Reed A E, Weinstock R B and Weinhold F 1985 Natural population analysis J. Chem. Phys. 83 735

    Article  CAS  Google Scholar 

  41. Lu T and Chen F 2012 Multiwfn: A Multifunctional Wavefunction Analyzer J. Comput. Chem. 33 580

    Article  PubMed  Google Scholar 

  42. Lu T and Chen F-W 2011 Meaning and functional form of the electron localization function Acta Phys. -Chim. Sin. 27 2786

    Article  CAS  Google Scholar 

  43. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2013 Gaussian 09, Revision E.01, Gaussian Inc, Wallingford CT

  44. Geerlings P, De Proft F and Langenaeker W 2003 Conceptual density functional theory Chem. Rev. 103 1793

    Article  CAS  PubMed  Google Scholar 

  45. Domingo L R, Aurell M J, Pérez P and Contreras R 2002 Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions Tetrahedron 58 4417

    Article  CAS  Google Scholar 

  46. Jaramillo P, Domingo L R, Chamorro E and Pérez P 2008 A further exploration of a nucleophilicity index based on the gas-phase ionization potentials J. Mol. Struct.-THEOCHEM 865 68

    Article  CAS  Google Scholar 

  47. Yang W and Mortier W J 1986 The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines J. Am. Chem. Soc. 108 5708

    Article  CAS  PubMed  Google Scholar 

  48. Domingo L R, Pérez P and Sáez J A 2013 Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions RSC Adv. 3 1486

    Article  CAS  Google Scholar 

  49. Chamorro E, Pérez P and Domingo L R 2013 On the nature of Parr functions to predict the most reactive sites along organic polar reactions Chem. Phys. Lett. 582 141

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author is thankful to the Research Council and Office of Graduate Studies of Ayatollah Boroujerdi University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Soleymani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, M. Coupling of pseudoradical centers in the synthesis of oxazine fused-spiroindoline: a two-stage one-step double cyclization. J Chem Sci 134, 99 (2022). https://doi.org/10.1007/s12039-022-02098-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02098-2

Keywords

Navigation