Skip to main content

Advertisement

Log in

Eosin Y photocatalyzed access to Biginelli reaction using primary alcohols via domino multicomponent cascade: an approach towards sustainable synthesis of 3,4-dihydropyrimidin-2(1H)-ones

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The Eosin Y photocatalyzed Biginelli protocol has been established by a cascade one-pot three-component reaction of primary alcohols, α-ketoester, and urea to provide pharmacologically promising 3,4-dihydropyrimidin-2(1H)-ones in high yields. The key benefits of the present scheme are the capability to allow operational simplicity, readily available substrates, straightforward workup and high yields. This Eosin Y based photocatalytic approach can permit conquering traditional metal-catalyzed reactions in a sustainable manner, thus delivering economic and environmental rewards.

Graphical abstract

An environmentally benign protocol for the synthesis of 3,4-DHPMs has been developed using inexpensive molecular oxygen, visible light as green energy source and eosin Y as photoreceptor-cum-sensitizer. The utilized photoreceptor revealed its unique properties in rapid intersystem crossing, high photo and chemical stability, ease of separation and high catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Zhou Q Q, Zou Y Q, Lu L Q and Xiao W J 2019 Visible-light-induced organic photochemical reactions through energy-transfer pathways Angew. Chem. Int. Edit. 58 1586

    Article  CAS  Google Scholar 

  2. Schultz D M and Yoon T P 2014 Solar synthesis: prospects in visible light photocatalysis Science 343 6174

    Article  Google Scholar 

  3. Prier C K, Rankic D A and MacMillan D W 2013 Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis Chem. Rev. 113 5322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xi Y, Yi H and Lei A 2013 Synthetic applications of photoredox catalysis with visible light Org. Bio. Chem. 11 2387

    Article  CAS  Google Scholar 

  5. Welin E R, Le C, Arias-Rotondo D M, McCusker J K and MacMillan D W 2017 Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel (II) Science 355 380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kainz Q M, Matier C D, Bartoszewicz A, Zultanski S L, Peters J C and Fu G C 2016 Asymmetric copper-catalyzed CN cross-couplings induced by visible light Science 351 681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lang X, Ma W, Chen C, Ji H and Zhao J 2014 Selective aerobic oxidation mediated by TiO2 photocatalysis Acc. Chem. Res. 47 355

    Article  CAS  PubMed  Google Scholar 

  8. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S and Hirai T 2012 Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation J. Am. Chem. Soc. 134 6309

    Article  CAS  PubMed  Google Scholar 

  9. Hering T, Slanina T, Hancock A, Wille U and König B 2015 Visible light photooxidation of nitrate: the dawn of a nocturnal radical Chem. Comm. 51 6568

    Article  CAS  PubMed  Google Scholar 

  10. Yoon T, Ischay M and Du J 2010 Visible light photocatalysis as a greener approach to photochemical synthesis Nat. Chem. 2 527

    Article  CAS  PubMed  Google Scholar 

  11. Zuo Z, Ahneman D T, Chu L, Terrett J A, Doyle A G and MacMillan D W 2014 Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides Science 345 437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Narayanam J M, Tucker J W and Stephenson C R 2009 Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction J. Am. Chem. Soc. 131 8756

    Article  CAS  PubMed  Google Scholar 

  13. Cuthbertson J D and MacMillan D W 2015 The direct arylation of allylic sp 3 C–H bonds via organic and photoredox catalysis Nature 519 74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hari D P, Schroll P and König B 2012 Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts J. Am. Chem. Soc. 134 2958

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh I, Ghosh T, Bardagi J I and König B 2014 Reduction of aryl halides by consecutive visible light-induced electron transfer processes Science 346 725

    Article  CAS  PubMed  Google Scholar 

  16. Meng Q Y, Zhong J J, Liu Q, Gao X X, Zhang H H, Lei T, et al. 2013 A cascade cross-coupling hydrogen evolution reaction by visible light catalysis J. Am. Chem. Soc. 135 19052

    Article  CAS  PubMed  Google Scholar 

  17. Ji X, Chen Y, Paul B and Vadivel S 2019 Photocatalytic oxidation of aromatic alcohols over silver supported on cobalt oxide nanostructured catalyst J. All. Comp. 783 583

    Article  CAS  Google Scholar 

  18. Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, et al. 2006 Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts Science 311 362

    Article  CAS  PubMed  Google Scholar 

  19. Pillai U R and Sahle-Demessie E 2003 Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide App. Cat. A Gen. 245 103

    Article  CAS  Google Scholar 

  20. Ding J, Xu W, Wan H, Yuan D, Chen C, Wang L, et al. 2018 Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes App. Cat. B Env. 221 626

    Article  CAS  Google Scholar 

  21. Lee J and Lee J C 2018 An efficient oxidation of alcohols by aqueous H2O2 with 1, 3-dibromo-5, 5-dimethylhydantoin Lett. Org. Chem. 15 895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. ten Brink G J, Arends I W and Sheldon R A 2000 Green, catalytic oxidation of alcohols in water Science 287 1636

    Article  PubMed  Google Scholar 

  23. Mori K, Hara T, Mizugaki T, Ebitani K and Kaneda K 2004 Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen J. Am. Chem. Soc. 126 10657

    Article  CAS  PubMed  Google Scholar 

  24. Marko I E, Giles P R, Tsukazaki M, Brown S M and Urch C J 1996 Copper-catalyzed oxidation of alcohols to aldehydes and ketones: an efficient, aerobic alternative Science 274 2044

    Article  CAS  PubMed  Google Scholar 

  25. Fu R, Yang Y, Ma X, Sun Y, Li J, Gao H, et al. 2017 An efficient, eco-friendly and sustainable one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones directly from alcohols catalyzed by heteropolyanion-based ionic liquds Molecules 22 1531

    Article  PubMed Central  Google Scholar 

  26. Dai Y, Ren P, Li Y, Lv D, Shen Y, Li Y, et al. 2019 Solid base Bi24O31Br10(OH)δ with active lattice oxygen for the efficient photo-oxidation of primary alcohols to aldehydes Angew. Chem. Int. Edit. 58 6265

    Article  CAS  Google Scholar 

  27. Schilling W, Riemer D, Zhang Y, Hatami N and Das S 2018 Metal-free catalyst for visible-light-induced oxidation of unactivated alcohols using air/oxygen as an oxidant ACS Cat. 8 5425

    Article  CAS  Google Scholar 

  28. Zhang Y, Schilling W, Riemer D and Das S 2020 Metal-free photocatalysts for the oxidation of non-activated alcohols and the oxygenation of tertiary amines performed in air or oxygen Nature Prot. 15 822

    Article  CAS  Google Scholar 

  29. Zhang X, Rakesh K, Ravindar L and Qin H L 2018 Visible-light initiated aerobic oxidations: a critical review Green Chem. 20 4790

    Article  CAS  Google Scholar 

  30. Yu X, Wang L and Cohen S M 2017 Photocatalytic metal–organic frameworks for organic transformations CrystEngComm 19 4126

    Article  CAS  Google Scholar 

  31. Chen B, Wang L and Gao S 2015 Recent advances in aerobic oxidation of alcohols and amines to imines ACS Cat. 5 5851

    Article  CAS  Google Scholar 

  32. Fan W, Yang Q, Xu F and Li P 2014 A visible-light-promoted aerobic metal-free C-3 thiocyanation of indoles J. Org. Chem. 79 10588

    Article  CAS  PubMed  Google Scholar 

  33. Mitra S, Ghosh M, Mishra S and Hajra A 2015 Metal-free thiocyanation of imidazoheterocycles through visible light photoredox catalysis J. Org. Chem. 80 8275

    Article  CAS  PubMed  Google Scholar 

  34. Yadav A K and Yadav L D S 2015 Visible-light-mediated difunctionalization of styrenes: an unprecedented approach to 5-aryl-2-imino-1, 3-oxathiolanes Green Chem. 17 3515

    Article  CAS  Google Scholar 

  35. Cui Y, Li C and Bao M 2019 Deep eutectic solvents (DESs) as powerful and recyclable catalysts and solvents for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones Green Pro. Syn. 8 568

    CAS  Google Scholar 

  36. Mayer T U, Kapoor T M, Haggarty S J, King R W, Schreiber S L and Mitchison T J 1999 Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen Science 286 971

    Article  CAS  PubMed  Google Scholar 

  37. Russowsky D, Canto R M F, Sanches S A, D’Oca M G, De F Â, Pilli R A, et al. 2006 Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues Bio. Chem. 34 173

    Article  CAS  Google Scholar 

  38. Chen X H, Xu X Y, Liu H, Cun L F and Gong L Z 2006 Highly enantioselective organocatalytic Biginelli reaction J. Am. Chem. Soc. 128 14802

    Article  CAS  PubMed  Google Scholar 

  39. Rahman M, Majee A and Hajra A 2010 Microwave-assisted Brønsted acidic ionic liquid-promoted one-pot synthesis of heterobicyclic dihydropyrimidinones by a three-component coupling of cyclopentanone, aldehydes, and urea J. Het. Chem. 47 1230

    Article  CAS  Google Scholar 

  40. Shen Z L, Xu X P and Ji S J 2010 Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4, 5, 6-triaryl-3, 4-dihydropyrimidin-2 (1 H)-one and mechanistic study J. Org. Chem. 75 1162

    Article  CAS  PubMed  Google Scholar 

  41. Moosavifar M 2012 An appropriate one-pot synthesis of dihydropyrimidinones catalyzed by heteropoly acid supported on zeolite: an efficient and reusable catalyst for the Biginelli reaction Comp. Ren. Chim. 15 444

    Article  CAS  Google Scholar 

  42. Ramos L M, Ponce L T A Y, dos Santos M R, de Oliveira H C, Gomes A F, Gozzo F C, et al. 2012 Mechanistic studies on lewis acid catalyzed biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents J. Org. Chem. 77 10184

    Article  CAS  PubMed  Google Scholar 

  43. Fu R, Yang Y, Lai W, Ma Y, Chen Z, Zhou J, et al. 2015 Efficient and green microwave-assisted multicomponent Biginelli reaction for the synthesis of dihydropyrimidinones catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions Synth. Comm. 45 467

    Article  CAS  Google Scholar 

  44. Mansoor S S, Shafi S S and Ahmed S Z 2016 An efficient one-pot multicomponent synthesis of 3, 4-dihydropyrimidine-2-(1H)-ones/thiones/imines via a Lewis base catalyzed Biginelli-type reaction under solvent-free conditions Arab. J. Chem. 9 S846

    Article  Google Scholar 

  45. Mohammadi B and Behbahani F K 2018 Recent developments in the synthesis and applications of dihydropyrimidin-2 (1H)-ones and thiones Mol. Div. 22 405

    Article  CAS  Google Scholar 

  46. Safaei G J, Tavazo M and Mahdavinia G H 2018 Ultrasound promoted one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones using dendrimer-attached phosphotungstic acid nanoparticles immobilized on nanosilica Ultra Sono. 40 230

    Article  Google Scholar 

  47. Harsh S, Kumar S, Sharma R, Kumar Y and Kumar R 2020 Chlorophyll triggered one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones via photo induced electron transfer reaction Arab. J. Chem. 13 4720

    Article  CAS  Google Scholar 

  48. Wang J, Li Y, Peng Y and Song G 2014 Silver nitrate-catalyzed selective air oxidation of benzylic and allylic alcohols to corresponding aldehydes or ketones J. Chin. Chem. Soc. 61 517

    Article  CAS  Google Scholar 

  49. Ghosh S, Saikh F, Das J and Pramanik A K 2013 Hantzsch 1, 4-dihydropyridine synthesis in aqueous ethanol by visible light Tetrahedron Lett. 54 58

    Article  CAS  Google Scholar 

  50. Choudhary V R, Dhar A, Jana P, Jha R and Uphade B S 2005 A Green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst Green Chem. 7 768

    Article  CAS  Google Scholar 

  51. Nikitas N F, Tzaras D I, Triandafillidi I and Kokotos C G 2020 Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant Green Chem. 22 471

    Article  CAS  Google Scholar 

  52. Prebil R, Stavber G and Stavber S 2014 Aerobic oxidation of alcohols by using a completely metal-free catalytic system Eur. J. Org. Chem. 2014 395

    Article  CAS  Google Scholar 

  53. Yang X J, Zheng Y W, Zheng L Q, Wu L Z, Tung C H and Chen B 2019 Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickel–thiolate complex dual catalyst system Green Chem. 21 1401

    Article  CAS  Google Scholar 

  54. Ghosh P P, Mukherjee P and Das A R 2013 Triton-X-100 catalyzed synthesis of 1, 4-dihydropyridines and their aromatization to pyridines and a new one pot synthesis of pyridines using visible light in aqueous media RSC Adv. 3 8220

    Article  CAS  Google Scholar 

  55. Srivastava V, Singh P K and Singh P P 2019 Eosin Y catalysed visible-light mediated aerobic oxidation of tertiary amines Tetrahedron Lett. 60 151041

    Article  CAS  Google Scholar 

  56. Jeena V and Robinson R S 2012 Convenient photooxidation of alcohols using dye sensitised zinc oxide in combination with silver nitrate and TEMPO Chem. Comm. 48 299

    Article  CAS  PubMed  Google Scholar 

  57. Alwan D B 2016 Effect of solvent type and annealing temperature on efficiency for Eosin-y dye sensitized solar cells Ir. J. Sci. 57(4A) 2429

    Google Scholar 

  58. Nagaraju P, Balaraju M, Reddy K M, Prasad P S and Lingaiah N 2008 Selective oxidation of allylic alcohols catalyzed by silver exchanged molybdovanado phosphoric acid catalyst in the presence of molecular oxygen Cat. Comm. 9 1389

    Article  CAS  Google Scholar 

  59. Beier M J, Hansen T W and Grunwaldt J D 2009 Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria J. Cat. 266 320

    Article  CAS  Google Scholar 

  60. Reimers J R and Hall L E 1999 The solvation of acetonitrile J. Am. Chem. Soc. 121 3730

    Article  CAS  Google Scholar 

  61. Fu N Y, Yuan Y F, Cao Z, Wang S W, Wang J T and Peppe C 2002 Indium (III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction Tetrahedron 58 4801

    Article  CAS  Google Scholar 

  62. Heravi M M, Derikvand F and Bamoharram F F 2005 A catalytic method for synthesis of Biginelli-type 3, 4-dihydropyrimidin-2 (1H)-one using 12-tungstophosphoric acid J. Mol. Cat. A Chem. 242 173

    Article  CAS  Google Scholar 

  63. Mohamadpour F and Lashkari M 2018 Three-component reaction of β-keto esters, aromatic aldehydes and urea/thiourea promoted by caffeine, a green and natural, biodegradable catalyst for eco-safe Biginelli synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones derivatives under solvent-free conditions J. Serb. Chem. Soc. 83 673

    Article  CAS  Google Scholar 

  64. Yao B J, Wu W X, Ding L G and Dong Y B 2021 Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the Biginelli reaction J. Org. Chem. 86 3024

    Article  CAS  PubMed  Google Scholar 

  65. Karimi J Z and Moaddeli M S 2012 Synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones and their corresponding 2 (1H) thiones using trichloroacetic acid as a catalyst under solvent-free conditions ISRN Org. Chem. 2012 474626

  66. Tu S, Fang F, Zhu S, Li T, Zhang X and Zhuang Q 2004 A new Biginelli reaction procedure using potassium hydrogen sulfate as the promoter for an efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-one J. Het. Chem. 41 253

    Article  CAS  Google Scholar 

  67. Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, et al. 2005 Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant Environ. Sci. Technol. 39 2383

    Article  CAS  PubMed  Google Scholar 

  68. Figg C A, Hickman J D, Scheutz G M, Shanmugam S, Carmean R N, Tucker B S, et al. 2018 Color-coding visible light polymerizations to elucidate the activation of trithiocarbonates using Eosin Y Macromolecules 51 1370

    Article  CAS  Google Scholar 

  69. Meyer A U, Straková K, Slanina T and König B 2016 Eosin Y (EY) photoredox-catalyzed sulfonylation of alkenes: scope and mechanism Chem. A Eur. J. 22 8694

    Article  CAS  Google Scholar 

  70. Devthade V, Kamble G, Ghugal S G, Chikhalia K H and Umare S S 2018 Visible light-driven Biginelli reaction over mesoporous g-C3N4 Lewis-base catalyst Chem. Select 3 4009

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YOGESH KUMAR or RUPESH KUMAR.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUMAR, G., BHARGAVA, G., KUMAR, Y. et al. Eosin Y photocatalyzed access to Biginelli reaction using primary alcohols via domino multicomponent cascade: an approach towards sustainable synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J Chem Sci 134, 44 (2022). https://doi.org/10.1007/s12039-022-02039-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02039-z

Keywords

Navigation