Skip to main content

Advertisement

Log in

Fixation and sequestration of carbon dioxide by copper(II) complexes

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Abstract

The fixation of carbon dioxide (\(\hbox {CO}_{2})\) is an important global challenge. A significant increase of the atmospheric \(\hbox {CO}_{2}\) due to the industrial emissions and a steady increase in combustion of fossil fuels is a widespread environmental concern. This article is a short literature review on the recent developments in the field of \(\hbox {CO}_{2}\) activation and fixation by bioinspired copper(II) catalysts. In our laboratory, copper(II) complexes of bidentate ligands have been reported as catalysts for the fixation of \(\hbox {CO}_{2}\). The molecular structure of one of the complexes has shown unusual trigonal bipyramid geometry (\(\tau \), 0.936) by the coordination of two ligand units and a water molecule. All the complexes exhibited a well-defined Cu(II)/Cu(I) redox potentials around 0.352 to 0.401 V in acetonitrile. The rhombic EPR spectra of the complexes indicate the existence of a geometrical equilibrium between trigonal bipyramidal and square pyramidal at 70 K. The d-d transitions around 750–800 and 930–955 nm further supports five coordination geometry in solution. These copper(II) complexes have successfully fixed atmospheric \(\hbox {CO}_{2}\) as \(\hbox {CO}_{3}^{2-}\) by using \(\hbox {Et}_{3}\hbox {N}\) as sacrificial reducing agent and afforded [\(\hbox {Cu(L)CO}_{3}\)(\(\hbox {H}_{2}\hbox {O}\))]. The \(\hbox {CO}_{3}^{2-}\) bound complex has shown a distorted square pyramidal geometry (\(\tau \), 0.369) around copper(II) center via the coordination of only one ligand unit, a carbonate, and water molecules. The catalysts are active enough to fix \(\hbox {CO}_{2}\) for eight repeating cycles without any change in the efficiency. The fixation of \(\hbox {CO}_{2}\) possibly proceeds via the formation of Cu(I)-species. This is supported by X-ray structure, which reveals distorted tetrahedral geometry by the coordination of two units of ligand.

GRAPHICAL ABSTRACT

SYNOPSIS The fixation of carbon dioxide (\(\hbox {CO}_{2})\) is an important global challenge. This review summarizes the recent developments in \(\hbox {CO}_{2}\) fixation by bioinspired Cu(II) catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 1
Fig. 2
Scheme 8

Similar content being viewed by others

References

  1. Aresta M, Dibenedetto A and Angelini A 2014 Catalysis for the valorization of exhaust carbon: from \(\text{CO}_2\) to chemicals, materials, and fuels. Technological use of \(\text{ CO }_2\) Chem. Rev. 114 1709

    Article  CAS  PubMed  Google Scholar 

  2. Lindsey A S and Jeskey H 1957 The kolbe-schmitt reaction Chem. Rev. 57 583

    Article  CAS  Google Scholar 

  3. Glueck S M, Gumus S, Fabian W M F and Faber K 2010 Biocatalytic carboxylation Chem. Soc. Rev. 39 313

    Article  CAS  PubMed  Google Scholar 

  4. English N J, El-Hendawy M M, Mooney D A and MacElroy J M D 2014 Perspectives on atmospheric \(\text{ CO }_2\) fixation in inorganic and biomimetic structures Coord. Chem. Rev. 269 85

    CAS  Google Scholar 

  5. Mikkelsen M, Jorgensena M and Krebs F C 2010 The teraton challenge. A review of fixation and transformation of carbon dioxide Energy Environ. Sci. 3 43

    Article  CAS  Google Scholar 

  6. Nielsen C J, Herrmann H and Weller C 2012 Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS) Chem. Rev. 41 6684

    Article  CAS  Google Scholar 

  7. Savile C K and Lalonde J J 2011 Biotechnology for the acceleration of carbon dioxide capture and sequestration Curr. Opin. Biotechnol. 22 818

    Article  CAS  PubMed  Google Scholar 

  8. (a) Wang W, Wang S, Ma X and Gong J 2011 Recent advances in catalytic hydrogenation of carbon dioxide Chem. Soc. Rev. 40 3703

    Article  CAS  PubMed  Google Scholar 

  9. (a) Kondratenko E V, Mul G, Baltrusaitis J, Larrazabal G O and Perez-Ramirez J 2013 Status and perspectives of \(\text{ CO }_2\) conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6 3112; (b) Appel A M, Bercaw J E, Bocarsly A B, Dobbek H, DuBois D L, Dupuis M, Ferry J G, Fujita E, Hille R, Kenis P J A, Kerfeld C A, Morris R H, Peden C H F, Portis A R, Ragsdale S W, Rauchfuss T B, Reek J N H, Seefeldt L C, Thauer R K and Waldrop G L 2013 Frontiers Opportunities, and challenges in biochemical and chemical catalysis of \(\text{ CO }_2\) fixation Chem. Rev. 113 6621

  10. Finn C, Schnittger S L, Yellowlees J and Love J B 2012 Molecular approaches to the electrochemical reduction of carbon dioxide Chem. Commun. 48 1392

    Article  CAS  Google Scholar 

  11. Wu J, Huang Y, Ye W and Li Y 2017 \(\text{ CO }_2\) Reduction: From the Electrochemical to Photochemical Approach Adv. Sci. 4 1700194

    Article  CAS  Google Scholar 

  12. Kondratenko E V, Mul G, Baltrusaitis J, Larrazabalc G O and Perez-Ramirez J 2013 Status and perspectives of \(\text{ CO }_2\) conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes Energy Environ. Sci. 6 3112

    Article  CAS  Google Scholar 

  13. Oh Y and Hu X 2013 Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic \(\text{ CO }_2\) reduction Chem. Soc. Rev. 42 2253

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Jiang Y, Jiang Z, Wang X, Wang X, Zhang S, Hanac P and Yang C 2015 Enzymatic conversion of carbon dioxide Chem. Soc. Rev. 44 5981

    Article  CAS  PubMed  Google Scholar 

  15. Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R and Tumas W 2001 Catalysis research of relevance to carbon management: progress, challenges, and opportunities Chem. Rev. 101 953

    Article  CAS  PubMed  Google Scholar 

  16. Behr A 1988 Carbon dioxide as an alternative C1 synthetic unit: Activation by transition-metal complexes Angew. Chem., Int. Ed. Engl. 27 661

    Article  Google Scholar 

  17. Aresta M and Dibenedetto A 2007 Utilisation of \(\text{ CO }_2\) as a chemical feedstock: opportunities and challenges Dalton Trans. 28 2975

    Article  CAS  Google Scholar 

  18. Jessop P G, Ikariya T and Noyori R 1995 Homogeneous hydrogenation of carbon dioxide Chem. Rev. 95 259

    Article  CAS  Google Scholar 

  19. (a) Jeoung J H and Dobbek H 2007 Cabondioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase Science 318 1461; (b) Parkin A, Seravalli J, Vincent K A, Ragsdale S W and Armstrong F A 2007 Rapid and Efficient electroctalytic \(\text{ CO }_2\)/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode J. Am. Chem. Soc. 129 10328; (c) Dobbek H, Gremer L, Kiefersauer R, Huber R and Meyer O 2002 Catalysis at air dinuclear [CuSMo(=O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution Proc. Natl. Acad. Sci. 99 15971

  20. Lindahl P A 2002 The Ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel? Biochemistry 41 2097

    Article  CAS  PubMed  Google Scholar 

  21. Woolley P 1975 Models for metal ion function in carbonic anhydrase Nature 258 677

    Article  CAS  PubMed  Google Scholar 

  22. Merz K M, Hoffmann R and Dewar M J S 1989 The mode of action of carbonic anhydrase J. Am. Chem. Soc. 111 5636

    Article  CAS  Google Scholar 

  23. Krishnamurthy V M, Kaufman G K, Urbach A R, Gitlin I, Gudiksen K L, Weibel D B and Whitesides G M 2008 Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding Chem. Rev. 108 946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eriksson A E, Jones T A and Liljas A 1988 Refined structure of human carbonic anhydrase II at 2.0 Å resolution Proteins 4 274

    Article  CAS  PubMed  Google Scholar 

  25. Schrodt A, Neubrand A and van Eldik R 1997 Fixation of \(\text{ CO }\_2\) by Zinc(II) Chelates in Alcoholic Medium. X-ray Structures of \(\{[{\text{ Zn(cyclen) }}]\_3(\upmu \_3{-}{\text{ CO }}\_3)\}({\text{ ClO }}\_4)\_4\) and \([\text{ Zn(cyclen)EtOH }](\text{ ClO }\_4)\_2\) Inorg. Chem. 36 4579

  26. Tanase T, Nitta S, Yoshikawa S, Kobayashi K, Sakurai T and Yano S 1992 Spontaneous fixation of carbon dioxide in air by a nickel diamine complex: synthesis and characterization of a trinuclear nickel(II) complex with a novel hydrogen bonding system around a carbonate ligand Inorg. Chem. 31 1058

    Article  CAS  Google Scholar 

  27. Kimura E 2001 Model studies for molecular recognition of carbonic anhydrase and carboxypeptidase Acc. Chem. Res. 34 171

    Article  CAS  PubMed  Google Scholar 

  28. Behr A 1988 Carbon dioxide as an alternative C1 synthetic unit: Activation by transition-metal complexes Angew. Chem. Int. Ed. 27 661

    Article  Google Scholar 

  29. Gibson D H 1996 The ogranometallic chemistry of Carbon dioxide Chem. Rev. 96 2063

    Article  CAS  PubMed  Google Scholar 

  30. Gibson D H Carbon dioxide coordination chemistry: Metal complexes and surface-bound species. What relationship? Coord. Chem. Rev. 185 335

  31. Leitner W 1996 The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical survey Coord. Chem. Rev. 153 257

    Article  CAS  Google Scholar 

  32. Palmer D A and Vaneldik R 1983 The chemistry of metal carbonato and carbondioxide complexes Chem. Rev. 83 651

    Article  CAS  Google Scholar 

  33. Kitajima N, Hikichi S, Tanaka M and Morooka Y 1993 Fixation of catmospheric carbon dioxide by a series of hydroxo complexes of divalent metal ions and the implication for the catalytic role of metal ion in carbonic anhydrase. Synthesis, Characterization, and molecular structure of [LM(OH)]n (n=1 or 2) and LM (\(\upmu \)-\(\text{ CO }\_3\))ML(M(II)= Mn, Fe, Co, Ni, Cu, Zn; L= HB(3,5-iso-Pr2pz)3) J. Am. Chem. Soc. 115 5496

    Article  CAS  Google Scholar 

  34. Muthuramalingam S, Khamrang T, Velusamy M and Mayilmurugan R 2017 Catalytic fixation of atmospheric carbon dioxide by copper(II) complexes of bidentate ligands Dalton Trans. 46 16065

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Espana E, Gavina P, Latorre J, Soriano C and Verdejo B 2004 CO2 fixation by copper(II) complexes of a terpyridinophane aza receptor J. Am. Chem. Soc. 126 5082

    Article  CAS  PubMed  Google Scholar 

  36. Comba P, Gahan L R, Hanson G R, Maeder M and Westphal M 2014 Carbonic anhydrase activity of dinuclear CuII complexes with patellamide model ligands Dalton Trans. 43 3144

    Article  CAS  PubMed  Google Scholar 

  37. Massoud S S, Louka F R, Al-Hasan M A, Vicente R and Mautner F A 2015 Magneto-structural properties of carbonato-bridged copper(ii) complexes: fixation of atmospheric \(\text{ CO }_2\) New. J. Chem. 39 5944

    Article  CAS  Google Scholar 

  38. Farrugia L J, Lopinski S, Lovatt P A and Peacock R D 2001 Fixing Carbon Dioxide with Copper: Crystal Structure of [LCu(\(\upmu \)-\(\text{ C }\_2\text{ O }\_4\))CuL][Ph4B]2 (L = N,N\(^{\prime }\),N\(^{\prime \prime }\)-Triallyl-1,4,7-triazacyclononane) Inorg. Chem. 40 558

    Article  CAS  PubMed  Google Scholar 

  39. Angamuthu R, Byers P, Lutz M, Spek A L and Bouwman E 2010 Electrocatalytic \(\text{ CO }_2\) conversion to oxalate by a copper complex Science 327 313

    Article  CAS  PubMed  Google Scholar 

  40. Pokharel U R, Fronczek F R and Maverick A W 2014 Reduction of carbon dioxide to oxalate by a binuclear copper complex Nature Commun. 5 5883

    Article  CAS  Google Scholar 

  41. Takisawa H, Morishima Y, Soma S, Szilagyi R K and Fujisawa K 2014 Conversion of carbon dioxide to oxalate by \(\alpha \)-Ketocarboxylatocopper(II) complexes Inorg. Chem. 53 8191

    Article  CAS  PubMed  Google Scholar 

  42. (a) Yin H, Wada Y, Kitamura T and Yanagida S 2001 Photoreductive hehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts Environ. Sci. Technol. 35 227; (b) Xie J, Li C, Zhou Q, Wang W, Hou Y, Zhang B and Wang X 2012 Large improvement in the catalytic activity due to small changes in the diimine ligands: New mechanistic insight into the dirhodium(II,II) complex-based photocatalytic H2 production Inorg. Chem. 51 6376; (c) Sun Y P, Ma B and Lawson G E 1995 Electron donor-acceptor interactions of fullerenes \(\text{ C }_60\) and \(\text{ C }_70\) with triethylamine Chem. Phys. Lett. 233 57; (d) Singh P K, Nath S, Bhasikuttan A C, Kumbhakar M, Mohanty J, Sarkar S K, Mukherjee T and Pal H 2008 Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems J. Chem. Phys. 129 114504; (e) Prashanthi S, Kumar P H, Wang L, Perepogu A K and Bangal P R 2010 Reductive fluorescence quenching of the photoexcited free base meso-tetrakis (pentafluorophenyl) porphyrin by amines J. Fluoresc. 20 571; (f) Kurahashi T 2015 Reverse catalase reaction: Dioxygen activation via two-electron transfer from hydroxide to dioxygen mediated By a manganese(III) salen complex Inorg. Chem. 54 8356; (g) Gorner H 2008 Oxygen uptake after electron transfer from donors to the triplet state of nitronaphthalenes and dinitroaromatic compounds J. Photochem. Photobiol. 195 235

  43. Yoke J T, Weiss J F and Tollin G 1963 Reactions of triethylamine with copper(I) and copper(II) halides Inorg. Chem. 2 1210

    Article  CAS  Google Scholar 

  44. Meyer M, Albrecht-Gary A M, Dietrich-Buchecker C O and Sauvage J P 1999 \(\pi {-}\pi \) Stacking-Induced Cooperativity in Copper(I) Complexes with Phenanthroline Ligands Inorg. Chem. 38 2279

    Article  CAS  Google Scholar 

  45. Sanna G, Pilo M I, Zoroddu M A, Seeber R and Mosca S 1993 Electrochemical and spectroelctrochemical study of copper complexes with 1,10-phenanthrolines Inorg. Chim. Acta 208 153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Science and Engineering Research Board (SERB), New Delhi and Board of Research in Nuclear Science (BRNS), Mumbai for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Mayilmurugan.

Additional information

Special Issue on Modern Trends in Inorganic Chemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. Fixation and sequestration of carbon dioxide by copper(II) complexes. J Chem Sci 130, 78 (2018). https://doi.org/10.1007/s12039-018-1489-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1489-1

Keywords

Navigation