Skip to main content
Log in

The synthesis of diethyl 2-(2,2\('\)-bipyridin-4-ylmethylene)malonate and diethyl 3,3\('\)-(2,2\('\)-bipyridine-4,4\('\)-diyl)diacrylate

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The new acrylic acid derivatives diethyl 2-(2,2\('\)-bipyridin-4-ylmethylene)malonate and diethyl 3,3\('\)-(2,2\('\)-bipyridine-4,4\('\)-diyl)diacrylate which may be used for the introduction of metal coordination sites in polyacrylates were synthesized and characterized. Intermediates of the syntheses were prepared by improved synthetic protocols working under microwave conditions whenever it was advantageous for the resulting product in terms of reaction time and/or chemical yield. In addition, the crystal structure of one of the intermediates, 4,4\('\)-dibromo-2,2\('\)-bipyridine (6), is reported, in which molecules are arranged into infinite chains by C-H—Br interactions.

Graphical Abstract

SYNOPSIS Synthesis and characterization of new 2,2’-bipyridine ligands with substituents related to acrylic acid esters are reported. These compounds offer the possibility to incorporate 2,2’-bipyridine ligands or coordination compounds derived from them into polyacrylate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thompson D W, Akitaka I and Meyer T J 2013 [Ru(bpy)\(_{3}\)]\(^{2+}\) and other remarkable metal-to-ligand charge transfer (MLCT) excited states Pure Appl. Chem. 85 1257

    CAS  Google Scholar 

  2. Sun Q, Mosquera-Vazquez S, Suffren Y, Hankache J, Amstutz N, Lawson D, Latevi M, Vauthey E and Hauser A 2015 On the role of ligand-field states for the photophysical properties of ruthenium(II) polypyridyl complexes Coord. Chem. Rev. 282-283 87

    Article  CAS  Google Scholar 

  3. Dongare P, Myron B D B, Wang L, Thompson D W and Meyer T J 2017 [Ru(bpy)\(_{3}\)]\(^{2+}\) revisited. Is it localized or delocalized? How does it decay? Coord. Chem. Rev. 345 86

    Article  CAS  Google Scholar 

  4. Wenger O S 2013 Proton-Coupled Electron Transfer with Photoexcited Metal Complexes Acc. Chem. Res. 46 1517

    Article  CAS  PubMed  Google Scholar 

  5. Fukuzumi S, Jung J, Yamada Y, Kjima T and Nam W 2016 Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate Chem. Asian J. 11 1138

    Article  CAS  PubMed  Google Scholar 

  6. Knoll J D, Albani B A and Turro C 2015 New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and \(^{1}\text{ O }_{2}\) Generation Acc. Chem. Res. 48 2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duan L, Wang L, Li F, Li F and Sun L 2015 Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands Acc. Chem. Res. 48 2084

    Article  CAS  PubMed  Google Scholar 

  8. Pal A K and Hanan G S 2014 Design, synthesis and excited-state properties of mononuclear Ru(II) complexes of tridentate heterocyclic ligands Chem. Soc. Rev. 43 6184

    Article  CAS  PubMed  Google Scholar 

  9. Happ B, Winter A, Hager M D and Schubert U S 2012 Photogenerated avenues in macromolecules containing Re(I), Ru(II), Os(II), and Ir(III) metal complexes of pyridine-based ligands Chem. Soc. Rev. 41 2222

    Article  CAS  PubMed  Google Scholar 

  10. Bomben P G, Robson K C D, Koivisto B D and Berlinguette C P 2012 Cyclometalated ruthenium chromophores for the dye-sensitized solar cell Coord. Chem. Rev. 256 1438

    Article  CAS  Google Scholar 

  11. Robson K C D, Bomben P G and Berlinguette C P 2012 Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles Dalton Trans. 41 7814

    Article  CAS  PubMed  Google Scholar 

  12. Adeloye A O and Ajibade P A 2014 Towards the Development of Functionalized Polypyridine Ligands for Ru(II) Complexes as Photosensitizers in Dye-Sensitized Solar Cells (DSSCs) Molecules 19 12421

    Article  CAS  PubMed  Google Scholar 

  13. Lu C-W, Wang Y and Chi Y 2016 Metal Complexes with Azolate-Functionalized Multidentate Ligands: Tactical Designs and Optoelectronic Applications Chem. Eur. J. 22 17892

    Article  CAS  PubMed  Google Scholar 

  14. Omae I 2016 Application of the Five-Membered Ring Ruthenium Products of Cyclometalation Reactions for Manufacturing Dye-Sensitized Solar Cells Curr. Org. Chem. 20 2848

    Article  CAS  Google Scholar 

  15. Motley T C and Meyer G J 2016 Are we on a path to solar cells that utilize iron? NPG Asia Mater. 8 e261

    Article  CAS  Google Scholar 

  16. Jakubikova E and Bowman D N 2015 Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective Acc. Chem. Res. 48 1441

    Article  CAS  PubMed  Google Scholar 

  17. Heintz K, Imhof W and Görls H 2017 Microwave assisted synthesis of 3-(2,2\(^\prime \)-bipyridine-4-yl)-2-propenoic acid ethyl ester Monatsh. Chem. 148 991

    Article  CAS  Google Scholar 

  18. Ladouceur S, Swanick K N, Gallagher-Duval S, Ding Z and Zysman-Colma E 2013 Strongly Blue Luminescent Cationic Iridium(III) Complexes with an Electron-Rich Ancillary Ligand: Evaluation of Their Optoelectronic and Electrochemiluminescence Properties Eur. J. Inorg. Chem. 30 5329

    Article  CAS  Google Scholar 

  19. ten Brink G-J, Arends I W C E, Hoogenraad M, Verspui G and Sheldon R A 2003 Catalytic Conversions in Water. Part 22: Electronic Effects in the (Diimine)palladium(II)-Catalysed Aerobic Oxidation of Alcohols Adv. Synth. Catal. 345 497

    Article  Google Scholar 

  20. Zalas M, Gierczyk B, Ceglowski M and Schroeder G 2012 Synthesis of new dendritic antenna-like polypyridine ligands Chem. Papers 66 733

    Article  CAS  Google Scholar 

  21. Maerker G and Case F H 1958 The Synthesis of Some 4,4\(^{\prime }\)-Disubstituted 2,2\(^{\prime }\)-Bipyridines J. Am. Chem. Soc. 80 2745

    Article  CAS  Google Scholar 

  22. Sari N, Nartop D and Logoglu E 2009 Synthesis, characterization, conductivity and investigation of antimicrobial and fungus of magnetic polymer including Schiff bases Asian J. Chem. 21 2331

    CAS  Google Scholar 

  23. Dupau P, Renouard T and Le Bozec H 1996 Straightforward synthesis of 4-formyl- and 4,4\(^\prime \)-diformyl-2,2\(^\prime \)-bipyridines: Access to new dialkenyl substituted bipyridyl ligands Tetrahedron Lett. 37 7503

    Article  CAS  Google Scholar 

  24. Maury O, Guégan J-P, Renouard T, Hilton A, Dupau P, Sandon N, Toupet L and Le Bozec H 2001 Design and synthesis of 4,4\(^\prime -\pi \)-conjugated[2,2\(^\prime \)]-bipyridines: a versatile class of tunable chromophores and fluorophores New J. Chem. 25 1553

    Article  CAS  Google Scholar 

  25. COLLECT 1998 Data Collection Software; Nonius B.V., Netherlands

  26. Otwinowski Z and Minor W 1997 Processing of X-Ray Diffraction Data Collected in Oscillation Mode Methods Enzymol. 276 307

    Article  CAS  Google Scholar 

  27. SADABS 2.10, 2002 Bruker-AXS Inc., Madison, WI, U.S.A

  28. Sheldrick G M 2008 A short history of SHELX Acta Cryst. A 64 112

  29. Farrugia L J 1997 ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Cryst. 30 565

    Article  CAS  Google Scholar 

  30. Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and van de Streek J 2006 Mercury: visualization and analysis of crystal structures J. Appl. Cryst. 39 453

    Article  CAS  Google Scholar 

  31. Ameta S C, Punjabi P B, Ameta R and Ameta C (Eds.) 2015 Microwave-Assisted Organic Synthesis (Oakville, Canada: Apple Academic Press Inc.)

  32. Kappe C O, Stadler A and Dallinger D 2012 Microwaves in Organic and Medicinal Chemistry (Weinheim, Germany: Wiley-VCH)

    Book  Google Scholar 

  33. Desiraju G R and Steiner T 2001 The Weak Hydrogen Bond (Oxford, UK: Oxford University Press)

    Book  Google Scholar 

Download references

Acknowledgements

K.H. gratefully acknowledges a Ph.D. grant from “Stiftung der Deutschen Wirtschaft”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Imhof.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heintz, K., Görls, H. & Imhof, W. The synthesis of diethyl 2-(2,2\('\)-bipyridin-4-ylmethylene)malonate and diethyl 3,3\('\)-(2,2\('\)-bipyridine-4,4\('\)-diyl)diacrylate. J Chem Sci 130, 67 (2018). https://doi.org/10.1007/s12039-018-1475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1475-7

Keywords

Navigation