Skip to main content
Log in

Nanoclusters of Cyanuric Acid

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this article, the self-assembly of cyanuric acid (CA) molecules into nano-structures is examined. Equilibrium geometry of CA is planar and it belongs to the D 3h point group. It is shown that CA clusters form three dimensional bowls and balls. Cyclic pentamer (5-bowl) is the basic motif responsible for these non-planar geometries. It is also shown that the cyclic hexamer based clusters can be non-planar if they contain a 5-bowl. A unified criterion for the formation of bowls and balls from basic molecular building blocks emerges from this study. The role of symmetry in supramolecular self-assembly is also clearly evident from the present study.

This article demonstrates that clusters of cyanuric acid with complementary hydrogen bonding interaction sites could result in the formation of bowls and balls in addition to the well - known planar sheet structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lehn J-M 1988 Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices(Nobel lecture) Angew. Chem. Int. Ed. Engl. 27 89

    Article  Google Scholar 

  2. Atwood J L and Steed J W 2004 In Encyclopedia of Supramolecular Chemistry (New York: M. Dekker, Inc)

  3. Steed J W and Gale P A 2012 In Supramolecular chemistry: From molecules to nanomaterials (New York: Wiley)

  4. Desiraju G R 2007 Crystal engineering: A holistic view Angew. Chem. Int. Ed. Engl. 46 8342

    Article  CAS  Google Scholar 

  5. Jeffrey G A 1997 In An introduction to hydrogen bonding (New York: Oxford University Press)

  6. Jeffrey G A and Saenger W 1994 In Hydrogen bonding in biological structures (New York: Springer-Verlag)

  7. Desiraju G R and Steiner T 2001 In The Weak Hydrogen Bond: In Structural Chemistry and Biology (New York: Oxford University Press)

  8. Elango M, Parthasarathi R, Subramanian V and Sathyamurthy N 2005 Bowls, balls and sheets of boric acid clusters: The role of pentagon and hexagon motifs J. Phys. Chem. A 109 8587

    Article  CAS  Google Scholar 

  9. Elango M, Subramanian V and Sathyamurthy N 2008 The self-assembly of metaboric acid molecules into bowls, balls and sheets J. Phys. Chem. A 112 8107

    Article  CAS  Google Scholar 

  10. Elango M, Subramanian V, Rahalkar A P, Gadre S R and Sathyamurthy N 2008 Structure, energetics, and reactivity of boric acid nanotubes: A molecular tailoring approach J. Phys. Chem. A 112 7699

    Article  CAS  Google Scholar 

  11. Ranganathan A, Pedireddi V R and Rao C N R 1999 Hydrothermal synthesis of organic channel structures: 1 : 1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids J. Am. Chem. Soc. 121 1752

    Article  CAS  Google Scholar 

  12. Liang X Q, Pu X M, Zhou H W, Wong N B and Tian A N 2007 Keto-enol tautomerization of cyanuric acid in the gas phase and in water and methanol J. Mol. Struc.-Theochem. 816 125

    Article  CAS  Google Scholar 

  13. Kannappan K, Werblowsky T L, Rim K T, Berne B J and Flynn G W 2007 An experimental and theoretical study of the formation of nanostructures of self-assembled cyanuric acid through hydrogen bond networks on graphite J. Phys. Chem. B 111 6634

    Article  CAS  Google Scholar 

  14. Martsinovich N and Kantorovich L 2008 Comparative Theoretical Study of O- and S-Containing Hydrogen-Bonded Supramolecular Structures J. Phys. Chem. C 112 17340

    Article  CAS  Google Scholar 

  15. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J, Brothers E N, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 Gaussian 09. Wallingford, CT, USA: Gaussian, Inc.

  16. Boys S F and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  17. Scott A P and Radom L 1996 Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors J. Phys. Chem. 100 16502

    Article  CAS  Google Scholar 

  18. Fogarasi G and Pulay P 1984 AB Initio Vibrational Force Fields Annu. Rev. Phys. Chem. 35 191

    Article  CAS  Google Scholar 

  19. Bader R F W 1994 In Atoms in molecules: A quantum theory (Oxford: Clarendon Press)

  20. Biegler-Konig F, Schonbohm J, Derdau R, Bayles D and Bader R F W 2000 AIM 2000. Bielefeld, Germany

  21. Gadre S R and Shirsat R N 2000 In Electrostatics of Atoms and Molecules (Hyderabad: Universities Press)

  22. Murray J S and Sen K 1996 In Molecular electrostatic potentials: Concepts and applications (Amsterdam: Elsevier Science)

  23. Chen Z, Wannere C S, Corminboeuf C, Puchta R and Schleyer P v R 2005 Nucleus-Independent Chemical Shifts (NICS) as an aromaticity criterion Chem. Rev. 105 3842

    Article  CAS  Google Scholar 

  24. Klotz I M and Askounis T 1947 Absorption spectra and tautomerism of cyanuric acid, melamine and some related compounds J. Am. Chem. Soc. 69 801

    Article  CAS  Google Scholar 

  25. Newman R and Badger R M 1952 Infrared spectra of cyanuric acid and deutero cyanuric acid1 J. Am. Chem. Soc. 74 3545

    Article  CAS  Google Scholar 

  26. Coppens P and Vos A 1971 Electron density distribution in cyanuric acid. II. Neutron diffraction study at liquid nitrogen temperature and comparison of X-ray neutron diffraction results Acta Crystallogr. B 27 146

    Article  CAS  Google Scholar 

  27. Wiebenga E H 1952 Crystal structure of cyanuric acid J. Am. Chem. Soc. 74 6156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by a grant from the Council of Scientific and Industrial Research, New Delhi. One of the authors (ME) thanks CSIR for financial assistance. NS is grateful to the Department of Science and Technology, New Delhi for a J. C. Bose National Fellowship. NS is an Honorary Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V SUBRAMANIAN or N SATHYAMURTHY.

Additional information

Special Issue on THEORETICAL CHEMISTRY/CHEMICAL DYNAMICS

Dedicated to the memory of the late Professor Charusita Chakravarty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ELANGO, M., SUBRAMANIAN, V. & SATHYAMURTHY, N. Nanoclusters of Cyanuric Acid. J Chem Sci 129, 873–881 (2017). https://doi.org/10.1007/s12039-017-1259-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1259-5

Keywords

Navigation