Skip to main content
Log in

Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and homodimers’ formation were evaluated at B3LYP/6-311++G** and MP2/6-311++G** levels. The energies were corrected for zero-point vibrational energies and basis set superposition error using counterpoise method. Atoms in molecules study has been carried out in order to characterize the hydrogen bonds through the changes in electron density and laplacian of electron density. A natural energy decomposition and natural bond orbital analysis was performed to understand the nature of hydrogen bonding.

Sixteen hydrogen bonded adducts of formamide, urea and urea monoxide with one water molecule and their homodimers have been optimized at B3LYP/6-311++G** and MP2/6-311++G** levels. Monohydrated Adducts and homodimers formation with the corresponding thio-analogs were also studied for comparative purpose. Atoms in molecules study has been carried out in order to characterize the hydrogen bonds. A natural energy decomposition and natural bond orbital analysis were performed to understand the nature of hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jeffrey G A 1997 In An Introduction to Hydrogen Bonding (USA: Oxford University Press)

  2. Desiraju G R and Stenier T 1999 In The Weak Hydrogen Bond (Oxford: Oxford University Press)

  3. Bandhopadhyay I, Lee H M and Kim K S 2005 J. Phys. Chem. A. 109 1720

  4. Sobczyk L, Grabowski S and Krygowski T M 2005 Chem. Rev. 105 3513

  5. Hinton J F and Harpool R D 1997 J. Am. Chem. Soc. 99 349

  6. Jaeisen P G and Stevens W J 1986 J. Chem. Phys. 84 3271

  7. Engdahl A and Nelander B 1993 J. Chem. Phys. 99 4894

  8. Sim F and St-Amant A 1992 J. Am. Chem. Soc. 114 439

  9. Wang X C, Facelli J C and Simons J 1993 Int. J. Quantum. Chem. 45 123

  10. Liu T, Li H, Huang M, Duan Y and Wang Z 2008 J. Phys. Chem. A. 112 5436

  11. Urban J J, Tillman B G and Cronin W A 2006 J. Phys. Chem. A. 110 11120

  12. Pliego J R Jr 2004 Chem. Phy. 306 273

  13. Cordeiro M A M, Santana W P, Cusinato R and Cordeiro J M M 2006 J. Mol. Struct. (THEOCHEM) 759 159

  14. Sakai D, Mastuda Y, Hachiya M, Mori M, Fujii A and Mikami N 2008 J. Phys. Chem. A. 112 6840

  15. Del Bene J E, Alkorta I and Elguero J 2008 J. Phys. Chem. A. 112 6338

  16. Taha A N and True N S 2000 J. Phys. Chem. A. 104 2985

  17. Angelina E L and Peruchena N M 2011 J. Phys. Chem. A. 115 4701

  18. Espinosa E and Molins E 2000 J. Chem. Phys. 113 5686

  19. Sunita S S, Rohini N K, Kulkarni M G, Nagaraju M and Sastry G N 2006 J. Am. Chem. Soc. 128 7752

  20. Sunita S S, Rohini N K, Kulkarni M G, Nagaraju M and Sastry G N 2007 Macromolecules 40 1824

  21. Nagaraju M and Sastry G N 2010 Int. J. Quantum. Chem. 110 1994

  22. Nenitescu K D 1962 In Organicheskaya Khimiya (Organic Chemistry). Izdatestvo Innostrannoy Literatury, Academician Kabachnick, MI (ed.) (Moscow: Publishing of foreign literature) Vol. 1 p 815

  23. Zhang R, Zhao G and Wu W 2009 Chin. J. Chem. Phys. 22 511

  24. Lee K, Benson D R, and Kuczera K 2000 Biochemistry 39 13737

  25. Gao J, Pavelites J J and Habibollazadeh D 1996 J. Phys. Chem. A. 100 2689

  26. Vishnyakov A, Lyubartsev A P and Laaksonen A 2001 J. Phys. Chem. A. 105 1702

  27. Finer E G, Franks F and Tait M J 1972 J. Am. Chem. Soc. 94 4424

  28. Hoccart X and Turrel G J 1993 J. Chem. Phys. 99 8498

  29. Keuleers R, Rousseau B, Alsenoy C V and Desseyn H O 1999 J. Phys. Chem. A. 103 462

  30. Ramondo F, Bencienni L, Caminiti R, Pieretti A and Gontrani L 2007 Phys. Chem. Chem. Phys. 9 2206

  31. Burton R C, Ferrari E S, Davey R J, Hopwood J, Qualey M J, Finney J L and Bowron D T 2008 Cryst. Growth Des. 8 1559

  32. Siu D and Koga Y 2005 J. Phys. Chem. B. 109 16886

  33. Lee M and van der Vegt N F A 2006 J. Am. Chem. Soc. 128 4948

  34. Fong C, Wells D, Krodkiewska I, Hartley P G and Drummond C J 2006 Chem. Mater. 18 594

  35. Koga Y, Miyazaki Y, Nagano Y and Inaba A 2008 J. Phys. Chem. B. 112 11341

  36. Weiqn Z, Wen Y and Lihua Qiu 2005 J. Mol. Struct. (THEOCHEM) 730 133

  37. Vazquez L, Salvarezza R C and Arvia A 1997 J. Phys. Rev. Lett. 79 709

  38. Kim K, Lin Y T and Mosher H S 1988 Tetrahedron. Lett. 29 3183

  39. Maryanoff C A, Stanzione R C, Plampin J N and Mills J E 1986 J. Org. Chem. 51 1882

  40. Mantri P, Duffy D E and Kettner C A 1996 J. Org. Chem. 61 5690

  41. Dempcy R O, Browne K A and Bruice T C 1995 J. Am. Chem. Soc. 117 6140

  42. Sigman M S and Jacobsen E N 1998 J. Am. Chem. Soc. 120 4901

  43. Whitesides G M and Ismagilov R F 1999 Science 284 89

  44. Chigwada T R and Simoyi R H 2005 J. Phys. Chem. A. 109 1094

  45. Gao Q Y, Liu B, Li L H and Wang J C 2007 J. Phys. Chem A. 111 872

  46. Miller A E, Bischoff J J and Pae K 1988 Chem. Res. Toxicol. 1 169

  47. Wiequn Z, Wen Y and L Qiu 2005 J. Mol. Struct. (THEOCHEM) 133

  48. Peng K, Yang W and Zhou W 2009 Int. J. Quantum Chem. 109 811

  49. Dill K A 1990 Biochemistry 29 7133

  50. Jeffrey G A and Saenger W 1991 In Hydrogen Bonding in Biological Structures (Berlin: Springer-Verlag)

  51. Stickle D F, Presta L G, Dill K A and Rose G D 1992 J. Mol. Biol. 226 1143

  52. Mardyukov A, Sanchez-Garcia E, Rodziewicz P, Doltsinis N L and Sander W 2007 J. Phys. Chem. A. 111 10552

  53. Frey J A and Leutwyler S 2006 J. Phys. Chem. A. 110 12512

  54. Grabowski S J, Sokalski W A and Leszczynski J 2006 J. Phys. Chem. A. 110 4772

  55. Papmokos G V and Demetropoulos I N 2004 J. Phys. Chem. A. 108 7291

  56. Tsuchida E 2004 J. Chem. Phys 121 4740

  57. Bende A and Suhai S 2005 Int. J. Quantum Chem. 103 841

  58. Varga R, Garza J, Friesner R A, Stern H, Hay B P and Dixon D A 2001 J. Phys. Chem. A. 105 4963

  59. Desfrancois C, Peiquet V, Carles S, Schermann J P and Andamowicz L 1998 Chem. Phys. 239 475

  60. Cabaleiro-Lago E M and Otero J R 2002 J. Chem. Phys. 117 1621

  61. Belosludov R V, Li Z and Kawazoe Y 1999 Mol. Eng. 8 105

  62. Masunov A and Dannerberg J J 199 J. Phys. Chem. A. 103 178

  63. Wallqvist A and Karlström G 1989 Chem. Scr. A. 29 1989

  64. Tanaka H, Touhara H and Nakanishi K 1985 J. Chem. Phys. 82 5184

  65. Jakli G and van Hook W W 1981 J. Phys. Chem. 85 3480

  66. Adams R, Balyuzi H M and Burge R E 1977 J. Appl. Crystallogr. 10 256

  67. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendel A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo C, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 Exploring Chemistry with Electronic Structure Methods; Gaussian Inc.: Wallingford, CT

  68. Hehre W J, Radoom L, Schleyer P V R and Pople J A 1986 In Ab Initio Molecular Orbital Theory (New York: Wiley)

  69. Foresman J B and Frisch E 1996 In Exploring Chemistry with Electronic Structure Methods: A Guide to using Gaussian. (Pittsburg: Gaussian Inc.)

  70. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

  71. Merrick J P, Moran D and Radom L 2007 J. Phys. Chem. A. 11683

  72. Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press)

  73. Biegler-König F and Schönbohm J 2002 AIM 2000 version 2.0, Germany

  74. Glendening E D and Streitwieser A 1994 J. Chem. Phys. 100 2900

  75. Glendening E D 1996 J. Am. Chem. Soc. 118 2473

  76. Schenter G K and Glendening E D 1996 J. Phys. Chem. 100 17152

  77. Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M and Weinhold F 2001 Theoretical Chemistry Institute, University of Wisconsin, Madison

  78. Weinhold F and Landis C R 2001 Chem. Edu. Res. Pract. 2 91

  79. Schmidt M W, Baldridge K K, Boatz J, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S J, Windus T L, Dupuis M and Montgomery Jr. J A 1993 J. Comput. Chem. 141347

  80. Foster J P and Weinhold F 1980 J. Am. Chem. Soc. 102 7211

  81. Reed A E and Weinhold F 1983 J. Chem. Phys. 78 4066

  82. Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747

  83. Popelier P L A 2000 In Atoms in Molecules: An Introduction (London: Pearson Education)

  84. Langley C H and Allinger N L 2003 J. Phys. Chem. A. 107 5208

  85. Glendening E D 2005 J. Phys. Chem. A. 109 11936

Download references

Acknowledgement

The authors are highly thankful to University Grants Commission (UGC) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAMANJIT KAUR.

Additional information

Supplementary Information

The optimized geometrical parameters for the adducts and corresponding monomeric units using the B3LYP and MP2 method are accessible through the supporting information tables TS1–TS22. The optimized geometrical parameters for the dimers are reported in tables TS23–TS38. The values of topological properties at BCPs characterizing the hydrogen bonds in monohydrate adduct and homodimers are reported in tables TS39–S40. The atomic charges have been evaluated using NBO analysis for all the thirty-two monohydrated adducts and homodimers reported in tables TS41–TS45. Important second order stabilization energies E(2) (kcal/mol) for the orbital interactions strengthening the formation of adduct with water and their homodimers reported in TS46–TS47. Molecular electrostatic potential (MEP) maps of the molecules and their adducts with water under investigation along with the Vmax and Vmin values from blue to red regions respectively are reported in figure S1. Supplementary information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.00 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KAUR, D., KHANNA, S. Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers. J Chem Sci 126, 1815–1829 (2014). https://doi.org/10.1007/s12039-014-0725-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0725-6

Keywords

Navigation