Skip to main content

Advertisement

Log in

Natural products and their mechanisms in potential photoprotection of the skin

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Exposure to solar radiation can generate different types of damage to the skin, including skin cancer. Depending on the duration of the exposure, sun damage can present as sunburn, photoaging, and photoimmunosuppression, among other effects. Using natural products on the skin may aid in preventing the damage caused by exposure to solar radiation, in addition to reducing the adverse side effects of common sunscreens, such as irritation, allergies, phototoxic reactions, photosensitivity, and generation of reactive oxygen species. On the other hand, the UV light absorption capacity of natural products has been reported to be due to the presence of chromophores in their structure, which, when added to the beneficial effects they have on the skin, makes them attractive candidates for use as photoprotectors. The present work gathers updated information regarding skin damage caused by prolonged sun exposure. It also describes the photoprotective effect of several natural products, their mechanism of action, and their preventive and therapeutic potential. For this purpose, the scientific literature was searched using PubMed, Science Direct, and Google Scholar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aguilar E and Bonilla P 2009 Antioxidant activity and immunological of flavonoids isolated from leaves of Smallanthus sonchifolius (yacon). Cienc. Invest. 12 15–23

    Google Scholar 

  • Al-Niaimi F and Zhen Chiang NY 2017 Topical vitamin C and the skin: Mechanisms of action and clinical applications. J. Clin. Aesthet. Dermatol. 10 14–17

    Google Scholar 

  • Ando H, Niki Y, Ito M, et al. 2012 Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J. Invest. Dermatol. 132 1222–1229

    Article  CAS  Google Scholar 

  • Arulselvan P, Fard MT, Tan WS, et al. 2016 Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016 5276130

    Article  Google Scholar 

  • Ashley NT, Weil ZM and Nelson RJ 2012 Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43 385–406

    Article  Google Scholar 

  • Barclay LRC, Basque MC, Stephenson VC and Vinqvist MR 2007 Photooxidations initiated or sensitized by biological molecules: singlet oxygen versus radical peroxidation in micelles and human blood plasma. Photochem. Photobiol. 78 248–255

    Article  Google Scholar 

  • Benavente-García O, Castillo J, Marin FR, Ortuño A and Del Río JA 1997 Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45 4505–4515

    Article  Google Scholar 

  • Bernstein C, Bernstein H, Payne CM and Garewal H 2002 DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: Fail-safe protection against carcinogenesis. Mutat. Res. Rev. Mutat. Res. 511 145–178

    Article  CAS  Google Scholar 

  • Biesalski HK 2007 Polyphenols and inflammation: Basic interactions. Curr. Opin. Clin. Nutr. Metab. Care 10 724–728

    Article  CAS  Google Scholar 

  • Bilaç C, Şahin MT and Öztürkcan S 2014 Chronic actinic damage of facial skin. Clin. Dermatol. 32 752–762

    Article  Google Scholar 

  • BrglezMojzer E, KnezHrnčič M, Škerget M, Knez Ž and Bren U 2016 Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21 901

    Article  Google Scholar 

  • Bultel-Poncé V, Felix-Theodore F, Sarthon C, Ponge JF and Bodo B 2004 New pigments from the terrestrial cyanobacterium Scytonema sp. collected on the Mitaraka Inselberg, French Guyana. J. Nat. Prod. 67 678–681

    Article  Google Scholar 

  • Calixto JB, Campos MM, Otuki MF and Santos ARS 2004 Anti-inflammatory compounds of plant origin. Part II. Modulation of proinflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70 93–103

    Article  CAS  Google Scholar 

  • Carletti G, Nervo G and Cattivelli L 2014 Flavonoids and melanins: A common strategy across two kingdoms. Int. J. Biol. Sci. 10 1159

    Article  CAS  Google Scholar 

  • Chinembiri TN, Du Plessis LH, Gerber M, Hamman JH and Du Plessis J 2014 Review of natural compounds for potential skin cancer treatment. Molecules 19 11679–11721

    Article  Google Scholar 

  • Chompoo J, Upadhyay A, Fukuta M and Tawata S 2012 Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC Complement. Altern. Med. 12 1058

    Article  Google Scholar 

  • Cuevas A, Saavedra N, Salazar LA and Abdalla DSP 2013 Modulation of immune function by polyphenols: Possible contribution of epigenetic factors. Nutrients 5 2314–2332

    Article  CAS  Google Scholar 

  • Dangles O and Dufour C 2006 Flavonoids: chemistry, biochemistry, and applications (Taylor & Francis)

  • DeBuys HV, Levy SB, Murray JC, Madey DL and Pinnell SR 2000 Modern approaches to photoprotection. Dermatol. Clin. 18 577–590

    Article  CAS  Google Scholar 

  • Ding S, Jiang H and Fang J 2018 Regulation of immune function by polyphenols. J. Immunol. Res. 2018 1264074

    Article  Google Scholar 

  • Epstein H 2009 Cosmeceuticals and polyphenols. Clin. Dermatol. 27 475–478

    Article  Google Scholar 

  • Fagundo E, Rodríguez-García C, Rodríguez C, et al. 2011 Estudio de las características fenotípicas y exposición a radiación ultravioleta en pacientes diagnosticados de melanoma cutáneo. Actas Dermosifiliogr. 102 599–604

    Article  CAS  Google Scholar 

  • FigueiredoKopke LF and Schmidt SM 2002 Carcinoma basocelular. An. Bras. Dermatol. 77 249–285

    Google Scholar 

  • Franco GN 2003 Histología de la piel. MG. Rev. Fac. Med. UNAM 46 130–133

    Google Scholar 

  • Fresco P, Borges F, Diniz C and Marques MPM 2006 New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 26 747–766

    Article  CAS  Google Scholar 

  • Garg A, Garg S, Zaneveld LJD and Singla AK 2001 Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phyther. Res. 15 655–669

    Article  CAS  Google Scholar 

  • Gaspar LR and Campos PMBG 2007 Photostability and efficacy studies of topical formulations containing UV-filters combination and vitamins A, C and E. Int. J. Pharm. 343 181–189

    Article  CAS  Google Scholar 

  • Ghersetich I, Troiano M, De Giorgi V and Lotti T 2007 Receptors in skin ageing and antiageing agents. Dermatol. Clin. 25 655–662

    Article  CAS  Google Scholar 

  • Giampieri F, Alvarez-Suarez JM, Tulipani S, et al. 2012 Photoprotective potential of strawberry (Fragaria × ananassa) extract against UV-A irradiation damage on human fibroblasts. J. Agric. Food Chem. 60 2322–2327

    Article  CAS  Google Scholar 

  • Gil EM and Kim TH 2000 UV-induced immune suppression and sunscreen. Photodermatol. Photoimmunol. Photomed. 16 101–110

    Article  CAS  Google Scholar 

  • González M, Vernhes M and Sánchez Á 2009 La radiación ultravioleta. Su efecto dañino y consecuencias para la salud humana. Theoria 18 69–80

    Google Scholar 

  • Gregoris E, Fabris S, Bertelle M, Grassato L and Stevanato R 2011 Propolis as potential cosmeceutical sunscreen agent for its combined photoprotective and antioxidant properties. Int. J. Pharm. 405 97–101

    Article  CAS  Google Scholar 

  • Guo Q, Li F, Duan Y, et al. 2020 Oxidative stress, nutritional antioxidants and beyond. Sci. China Life Sci. 63 866–874

    Article  CAS  Google Scholar 

  • Hanawalt PC 1972 Repair of genetic material in living cells. Endeavour 31 83–87

    CAS  Google Scholar 

  • Havsteen BH 2002 The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96 67–202

    Article  CAS  Google Scholar 

  • Henley SJ, Ward EM, Scott S, et al. 2020 Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 126 2225–2249

    Article  Google Scholar 

  • Hernández-Gil Sánchez J, BuendíaEisman A and Serrano Ortega S 2006 Patrones de exposición solar y tipos de cáncer de piel. Piel 21 472–476

    Article  Google Scholar 

  • Ijaz S, Akhtar N, Khan MS, et al. 2018 Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother. 103 1643–1651

    Article  CAS  Google Scholar 

  • Imokawa G 2008 Recent advances in characterizing biological mechanisms underlying UV-induced wrinkles: a pivotal role of fibrobrast-derived elastase. Arch. Dermatol. Res. 300 7–20

    Article  Google Scholar 

  • Iqbal J, Abbasi BA, Ahmad R, et al. 2019 Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed. Pharmacother. 109 1381–1393

    Article  CAS  Google Scholar 

  • Jafarinia M, Sadat Hosseini M, Kasiri N, et al. 2020 Quercetin with the potential effect on allergic diseases. Allergy, Asthma Clin. Immunol. 16 36

    Article  CAS  Google Scholar 

  • Janakiram NB, Mohammed A, Madka V, Kumar G and Rao CV 2016 Prevention and treatment of cancers by immune modulating nutrients. Mol. Nutr. Food Res. 60 1275–1294

    Article  CAS  Google Scholar 

  • Janisch KM, Milde J, Schempp H and Elstner EF 2005 Vitamin C, vitamin E and flavonoids. Dev. Ophthalmol. 38 59–69

    Article  CAS  Google Scholar 

  • Jemal A, Tiwari RC, Murray T, et al. 2004 Cancer Statistics 2004. CA. Cancer J. Clin. 54 8–29

    Article  Google Scholar 

  • Kashif M, Akhtar N and Mustafa R 2017 An overview of dermatological and cosmeceutical benefits of Diospyros kaki and its phytoconstituents. Rev. Bras. Farmacogn. 27 650–662

    Article  CAS  Google Scholar 

  • Kelly C, Hunter K, Crosbie L, Gordon MJ and Dutta-Roy AK 1996 Modulation of human platelet function by food flavonoids. Biochem. Soc. Trans. 24 197S-197S

    Article  CAS  Google Scholar 

  • Khaidakov M, Bishop ME, Manjanatha MG, et al. 2001 Influence of dietary antioxidants on the mutagenicity of 7,12-dimethylbenz[a]anthracene and bleomycin in female rats. Mutat. Res. Fundam. Mol. Mech. Mutagen. 480–481 163–170

    Article  Google Scholar 

  • Kielbassa C and Epe B 2000 DNA damage induced by ultraviolet and visible light and its wavelength dependence. Methods Enzymol. 319 436–445

    Article  CAS  Google Scholar 

  • Kielbassa C, Roza L and Epe B 1997 Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18 811–816

    Article  CAS  Google Scholar 

  • Kobzar G, Mardla V and Samel N 2005 Effects of α-tocopherol, L-arginine, and quercetin on aggregation of human platelets. Nutr. Res. 25 569–575

    Article  CAS  Google Scholar 

  • Kostelac D, Rechkemmer G and Briviba K 2003 Phytoestrogens modulate binding response of estrogen receptors α and β to the estrogen response element. J. Agric. Food Chem. 51 7632–7635

    Article  CAS  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B, et al. 1998 Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139 4252–4263

    Article  CAS  Google Scholar 

  • Kullavanijaya P and Lim HW 2005 Photoprotection. J. Am. Acad. Dermatol. 52 937–958

    Article  Google Scholar 

  • Kumar JP and Mandal BB 2019 Inhibitory role of silk cocoon extract against elastase, hyaluronidase and UV radiation-induced matrix metalloproteinase expression in human dermal fibroblasts and keratinocytes. Photochem. Photobiol. Sci. 18 1259–1274

    Article  CAS  Google Scholar 

  • Larsen GL and Henson PM 1983 Mediators of inflammation. Annu. Rev. Immunol. 1 335–359

    Article  CAS  Google Scholar 

  • Lee KA, Lee YJ, Ban JO, et al. 2012 The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1. Int. J. Mol. Med. 30 21–27

    Google Scholar 

  • Li C and Schluesener H 2017 Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr. 57 613–631

    Article  CAS  Google Scholar 

  • Lis DM and Baar K 2019 Effects of different vitamin C-enriched collagen derivatives on collagen synthesis. Int. J. Sport Nutr. Exerc. Metab. 29 526–531

    Article  CAS  Google Scholar 

  • Londoño-Londoño J, De Lima VR, Jaramillo C and Creczynski-pasa T 2010 Hesperidin and hesperetin membrane interaction: Understanding the role of 7-O-glycoside moiety in flavonoids. Arch. Biochem. Biophys. 499 6–16

    Article  Google Scholar 

  • Madan K and Nanda S 2018 In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorg. Chem. 77 159–167

    Article  CAS  Google Scholar 

  • Maia Campos PMBG, Gonçalves GMS and Gaspar LR 2008 In vitro antioxidant activity and in vivo efficacy of topical formulations containing vitamin C and its derivatives studied by non-invasive methods. Ski. Res. Technol. 14 376–380

    Article  Google Scholar 

  • Mallory SB and Watts JC 1987 Sunburn, sun reactions, and sun protection. Pediatr. Ann. 16 77–84

    Article  CAS  Google Scholar 

  • Marín D and Pozo A 2005 Pigmentación de la piel (I). Melaninas: Conceptos generales e implicaciones cosméticas. Offarm Farm. Soc. 24 116–118

    Google Scholar 

  • Martínez G, Mijares MR and De Sanctis JB 2019 Effects of flavonoids and its derivatives on immune cell responses. Recent Pat. Inflamm. Allergy Drug Discov. 13 84–104

    Article  Google Scholar 

  • Matthews J, Celius T, Halgren R and Zacharewski T 2000 Differential estrogen receptor binding of estrogenic substances: A species comparison. J. Steroid Biochem. Mol. Biol. 74 223–234

    Article  CAS  Google Scholar 

  • McCready S 1999 A dot blot immunoassay for UV photoproducts. Methods Mol. Biol. 113 147–156

    CAS  Google Scholar 

  • Menon EL, Perera R, Kuhn RJ and Morrison H 2007 Reactive oxygen species formation by UV-A irradiation of urocanic acid and the role of trace metals in this chemistry. Photochem. Photobiol. 78 567–575

    Article  Google Scholar 

  • Middleton E, Kandaswami C and Theoharides TC 2000 The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52 673–751

    CAS  Google Scholar 

  • Mlcek J, Jurikova T, Skrovankova S and Sochor J 2016 Quercetin and its anti-allergic immune response. Molecules 21 623

    Article  Google Scholar 

  • Montgomery BA, Murphy J, Chen JJ, et al. 2002 Mutagenicity of food-derived carcinogens and the effect of antioxidant vitamins. Nutr. Cancer 43 103–110

    Article  CAS  Google Scholar 

  • Moores J 2013 Vitamin C: a wound healing perspective. Br. J. Community Nurs. 18 S6–S11

    Article  Google Scholar 

  • Moreira LC, de Ávila RI, Veloso DFMC, et al. 2017 In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermocosmetic product. Toxicol. Vitr. 45 397–408

    Article  CAS  Google Scholar 

  • Moreno-Garrido I 2008 Microalgae immobilization: Current techniques and uses. Bioresour. Technol. 99 3949–3964

    Article  CAS  Google Scholar 

  • Muñoz JP and López-Bran E 2018 Protocolo diagnóstico de las lesiones con sospecha de malignidad cutánea. Medicine 12 2815–2820

    Google Scholar 

  • Ng C, Yen H, Hsiao H-Y and Su S-C 2018 Phytochemicals in skin cancer prevention and treatment: an updated review. Int. J. Mol. Sci. 19 941

    Article  Google Scholar 

  • Novoselova EG, Lunin SM, Novoselova TV, et al. 2009 Naturally occurring antioxidant nutrients reduce inflammatory response in mice. Eur. J. Pharmacol. 615 234–240

    Article  CAS  Google Scholar 

  • Palareti G, Legnani C, Cosmi B, et al. 2016 Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 38 42–49

    Article  CAS  Google Scholar 

  • Park HH, Lee S, Son HY, et al. 2008 Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 31 1303–1311

    Article  CAS  Google Scholar 

  • Park HM, Moon E, Kim AJ, et al. 2010 Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation. Int. J. Dermatol. 49 276–282

    Article  CAS  Google Scholar 

  • Paun G, Neagu E, Moroeanu V, et al. 2018 Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts. Rev. Bras. Farmacogn. 28 57–64

    Article  CAS  Google Scholar 

  • Pearson DA, Holt RR, Rein D, et al. 2005 Flavanols and platelet reactivity. Clin. Dev. Immunol. 12 1–9

    Article  CAS  Google Scholar 

  • Pérez-García LJ 2004 Metaloproteinasas y piel. Actas Dermosifiliogr. 95 413–423

    Article  Google Scholar 

  • Piesche M, Roos J, Kühn B, et al. 2020 The emerging therapeutic potential of nitro fatty acids and other michael acceptor-containing drugs for the treatment of inflammation and cancer. Front. Pharmacol. 11 1297

    Article  CAS  Google Scholar 

  • Pignatelli P, Pulcinelli FM, Celestini A, et al. 2000 The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr. 72 1150–1155

    Article  CAS  Google Scholar 

  • Potapovich AI, Kostyuk VA, Kostyuk TV, De Luca C and Korkina LG 2013 Effects of pre- and post-treatment with plant polyphenols on human keratinocyte responses to solar UV. Inflamm. Res. 62 773–780

    Article  CAS  Google Scholar 

  • Pullar J, Carr A and Vissers M 2017 The roles of vitamin C in skin health. Nutrients 9 866

    Article  Google Scholar 

  • Rastogi RP and Sinha RP 2009 Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27 521–539

    Article  CAS  Google Scholar 

  • Rastogi RP, Sinha RP, Moh SH, et al. 2014 Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B. 141 154–169

    Article  CAS  Google Scholar 

  • Rastogi RP, Sonani RR and Madamwar D 2015 Cyanobacterial sunscreen scytonemin: Role in photoprotection and biomedical research. Appl. Biochem. Biotechnol. 176 1551–1563

    Article  CAS  Google Scholar 

  • Rodrigo Schwartz A 2011 Melanoma maligno y diagnóstico diferencial de lesiones pigmentadas en piel. Rev. Med. Clin. Las Condes 22 728–734

    Google Scholar 

  • Ronchetti IP, Quaglino D and Bergamini G 1996 Ascorbic acid and connective tissue. Subcell. Biochem. 25 249–264

    Article  CAS  Google Scholar 

  • Roohbakhsh A, Parhiz H, Soltani F, Rezaee R and Iranshahi M 2014 Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin—A mini-review. Life Sci. 113 1–6

    Article  CAS  Google Scholar 

  • Sage E 1993 Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem. Photobiol. 57 163–174

    Article  CAS  Google Scholar 

  • Santangelo C, Varì R, Scazzocchio B, et al. 2007 Polyphenols, intracellular signalling and inflammation. Ann. Ist. Super. Sanita 43 394–405

    CAS  Google Scholar 

  • Schaefer H, Moyal D and Fourtanier A 1998 Recent advances in sun protection. Semin. Cutan. Med. Surg. 17 266–275

    Article  CAS  Google Scholar 

  • Schmid-Schönbein GW 2006 Analysis of inflammation. Annu. Rev. Biomed. Engl. 8 93–151

    Article  Google Scholar 

  • Serhan CN 2007 Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25 101–137

    Article  CAS  Google Scholar 

  • Sierra LJ, Córdoba Y, Mejía JJ, et al. 2020 Photoprotective Activity of Ipomoea horsfalliae flower extract. Rev. Bras. Farmacogn. 30 69–79

    Article  CAS  Google Scholar 

  • Simon JD 2000 Spectroscopic and dynamic studies of the epidermal chromophores trans- urocanic acid and eumelanin. Acc. Chem. Res. 33 307–313

    Article  CAS  Google Scholar 

  • Stevanato R, Bertelle M and Fabris S 2014 Photoprotective characteristics of natural antioxidant polyphenols. Regul. Toxicol. Pharmacol. 69 71–77

    Article  CAS  Google Scholar 

  • Švajger U and Jeras M 2012 Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int. Rev. Immunol. 31 202–222

    Article  Google Scholar 

  • Trautinger F 2001 Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clin. Exp. Dermatol. 26 573–577

    Article  CAS  Google Scholar 

  • Van Den Bossche K, Naeyaert JM and Lambert J 2006 The quest for the mechanism of melanin transfer. Traffic 7 769–778

    Article  Google Scholar 

  • Velásquez N and Fernández Michelena M 2004 Efectos poco publicados de los estrógenos: revisión. Rev. Obstet. Ginecol. Venez. 64 139–153

    Google Scholar 

  • Vílchez-Márquez F, Borregón-Nofuentes P, Barchino-Ortiz L, et al. 2020 Diagnosis and treatment of basal cell carcinoma in specialized dermatology units: a clinical practice guideline. Actas Dermosifiliogr. 111 291–299

    Article  Google Scholar 

  • Wang S, Shen P, Zhou J and Lu Y 2017 Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol. Res. 119 327–346

    Article  CAS  Google Scholar 

  • Weng Z, Zhang B, Asadi S, et al. 2012 Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One 7 e33805

    Article  CAS  Google Scholar 

  • Whanger P 1983 Selenium interactions with carcinogens. Fundam. Appl. Toxicol. 3 424–430

    Article  CAS  Google Scholar 

  • Xu D-P, Li Y, Meng X, et al. 2017 Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int. J. Mol. Sci. 18 96

    Article  Google Scholar 

  • Yoon JH and Baek SJ 2005 Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med. J. 46 585–596

    Article  CAS  Google Scholar 

  • Zubair H, Azim S, Ahmad A, et al. 2017 Cancer chemoprevention by phytochemicals: Nature’s healing touch. Molecules 22 1–24

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Council of Science and Technology (CONACYT) for the grant awarded to JCPA for the realization of his doctoral thesis, which is part of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Ruiz-López.

Additional information

Corresponding editor: Rajesh Vishwanathan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizano-Andrade, J.C., Vargas-Guerrero, B., Gurrola-Díaz, C.M. et al. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci 47, 77 (2022). https://doi.org/10.1007/s12038-022-00314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00314-2

Keywords

Navigation