Skip to main content
Log in

Possibilities of identifying members from Milky Way satellite galaxies using unsupervised machine learning algorithms

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

A detailed study of stellar populations in Milky Way (MW) satellite galaxies remains an observational challenge due to their faintness and fewer spectroscopically confirmed member stars. We use unsupervised machine learning methods to identify new members for nine nearby MW satellite galaxies using Gaia data release-3 (Gaia DR3) astrometry, the Dark Energy Survey (DES) and the DECam Local Volume Exploration Survey (DELVE) photometry. Two density-based clustering algorithms, DBSCAN and HDBSCAN, have been used in the four-dimensional astrometric parameter space (\(\alpha _{2016}\), \(\delta _{2016}\), \(\mu _{\alpha } \cos \delta \), \(\mu _\delta \)) to identify member stars belonging to MW satellite galaxies. Our results indicate that we can recover more than 80% of the known spectroscopically confirmed members in most satellite galaxies and also reject 95–100% of spectroscopic non-members. We have also added many new members using this method. We compare our results with previous studies using photometric and astrometric data and discuss the suitability of density-based clustering methods for MW satellite galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://pypi.org/project/hdbscan/.

References

  • Abbott T. M. C., Adamów M., Aguena M. et al. 2021, ApJS, 255, 20

    Article  ADS  Google Scholar 

  • Abdallah H., Adam R., Aharonian F. et al. 2020, Phys. Rev. D, 102, 062001

    Article  ADS  Google Scholar 

  • Acciari V. A., Ansoldi S., Antonelli L. A. et al. 2022, Phys. Dark Universe, 35, 100912

    Article  Google Scholar 

  • Astropy Collaboration, Robitaille T. P., Tollerud E. J. et al. 2013, A &A, 558, A33

  • Ball N. M., Brunner R. J. 2010, Int. J. Mod. Phys. D, 19, 1049

    Article  ADS  Google Scholar 

  • Baron D. 2019, arXiv e-prints, arXiv:1904.07248

  • Baron D., Poznanski D. 2017, MNRAS, 465, 4530

    Article  ADS  Google Scholar 

  • Battaglia G., Taibi S., Thomas G. F., Fritz T. K. 2022, A &A, 657, A54

    Google Scholar 

  • Bechtol K., Drlica-Wagner A., Balbinot E. et al. 2015, ApJ, 807, 50

    Article  ADS  Google Scholar 

  • Brown T. M., Tumlinson J., Geha M. et al. 2014, ApJ, 796, 91

    Article  ADS  Google Scholar 

  • Bruce J., Li T. S., Pace A. B. et al. 2023, arXiv e-prints, arXiv:2302.03708

  • Bullock J. S., Johnston K. V. 2005, ApJ, 635, 931

    Article  ADS  Google Scholar 

  • Campello R. J. G. B., Moulavi D., Sander J. 2013, in eds Pei J., Tseng V. S., Cao L., Motoda H., Xu G., Advances in Knowledge Discovery and Data Mining (Berlin, Heidelberg: Springer) p. 160

  • Carlin J. L., Grillmair C. J., Muñoz R. R., Nidever D. L., Majewski S. R. 2009, Astrophys. J., 702, L9

    Article  ADS  Google Scholar 

  • Carlin J. L., Sand D. J. 2018, ApJ, 865, 7

    Article  ADS  Google Scholar 

  • Casagrande L., VandenBerg D. A. 2014, MNRAS, 444, 392

  • Castro-Ginard A., Jordi C., Luri X. et al. 2022, A &A, 661, A118

    Google Scholar 

  • Cerny W., Pace A. B., Drlica-Wagner A. et al. 2021, ApJ, 910, 18

    Article  ADS  Google Scholar 

  • Cerny W., Simon J. D., Li T. S. et al. 2023, ApJ, 942, 111

    Article  ADS  Google Scholar 

  • Chambers K. C., Magnier E. A., Metcalfe N. et al. 2016, arXiv e-prints, arXiv:1612.05560

  • Dall’Ora M., Clementini G., Kinemuchi K. et al. 2006, ApJL, 653, L109

    Article  ADS  Google Scholar 

  • Diehl H. T., Abbott T. M. C., Annis J. et al. 2014, in eds Peck A. B., Benn C. R., Seaman R. L., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9149, Observatory Operations: Strategies, Processes and Systems V, 91490V

  • Drlica-Wagner A., Bechtol K., Rykoff E. S. et al. 2015, ApJ, 813, 109

    Article  ADS  Google Scholar 

  • Drlica-Wagner A., Bechtol K., Allam S. et al. 2016, ApJL, 833, L5

    Article  ADS  Google Scholar 

  • Drlica-Wagner A., Ferguson P. S., Adamów M. et al. 2022, ApJS, 261, 38

    Article  ADS  Google Scholar 

  • Elvin-Poole J., Crocce M., Ross A. J. et al. 2018, Phys. Rev. D, 98, 042006

    Article  ADS  Google Scholar 

  • Ester M., Kriegel H.-P., Sander J., Xu X. 1996, AAAI, 226

  • Fabricius C., Luri X., Arenou F. et al. 2021, A &A, 649, A5

    Google Scholar 

  • Fellhauer M., Wilkinson M. I., Evans N. W. et al. 2008, MNRAS, 385, 1095

    Article  ADS  Google Scholar 

  • Flaugher B., Diehl H. T., Honscheid K. et al. 2015, AJ, 150, 150

  • Frebel A., Bromm V. 2012, ApJ, 759, 115

    Article  ADS  Google Scholar 

  • Frebel A., Simon J. D., Kirby E. N. 2014, ApJ, 786, 74

    Article  ADS  Google Scholar 

  • Fritz T. K., Battaglia G., Pawlowski M. S. et al. 2018, A &A, 619, A103

    Google Scholar 

  • Gaia Collaboration, Helmi A., van Leeuwen F. et al. 2018a, A &A, 616, A12

  • Gaia Collaboration, Brown A. G. A., Vallenari A. et al. 2018b, A &A, 616, A1

  • Gaia Collaboration, Vallenari, A., Brown, A. G. A. et al. 2022, arXiv:2208.00211

  • Green G. 2018, J. Open Source Softw., 3, 695

    Article  ADS  Google Scholar 

  • Grillmair C. J. 2009, ApJ, 693, 1118

    Article  ADS  Google Scholar 

  • Hargis J. R., Willman B., Peter A. H. G. 2014, ApJL, 795, L13

    Article  ADS  Google Scholar 

  • Homma D., Chiba M., Okamoto S. et al. 2016, ApJ, 832, 21

    Article  ADS  Google Scholar 

  • Homma D., Chiba M., Okamoto S. et al. 2018, PASJ, 70, S18

  • Jenkins S. A., Li T. S., Pace A. B. et al. 2021, ApJ, 920, 92

    Article  ADS  Google Scholar 

  • Ji A. P., Frebel A., Chiti A., Simon J. D. 2016, Nature, 531, 610

    Article  ADS  Google Scholar 

  • Ji A. P., Li T. S., Simon J. D. et al. 2020, ApJ, 889, 27

    Article  ADS  Google Scholar 

  • Kallivayalil N., Sales L. V., Zivick P. et al. 2018, ApJ, 867, 19

    Article  ADS  Google Scholar 

  • Kauffmann G., White S. D. M., Guiderdoni B. 1993, MNRAS, 264, 201

    Article  ADS  Google Scholar 

  • Kim D., Jerjen H. 2015, ApJL, 808, L39

    Article  ADS  Google Scholar 

  • Kim D., Jerjen H., Mackey D., Da Costa G. S., Milone A. P. 2015, ApJL, 804, L44

    Article  ADS  Google Scholar 

  • Kim S. Y., Peter A. H. G., Hargis J. R. 2018, PRL, 121, 211302

    Article  ADS  Google Scholar 

  • Kirby E. N., Cohen J. G., Guhathakurta P. et al. 2013, ApJ, 779, 102

    Article  ADS  Google Scholar 

  • Klypin A., Kravtsov A. V., Valenzuela O., Prada F. 1999, ApJ, 522, 82

    Article  ADS  Google Scholar 

  • Koch A., Wilkinson M. I., Kleyna J. T. et al. 2009, ApJ, 690, 453

    Article  ADS  Google Scholar 

  • Koposov S., Belokurov V., Evans N. W. et al. 2008, ApJ, 686, 279

    Article  ADS  Google Scholar 

  • Koposov S. E., Belokurov V., Torrealba G., Evans N. W. 2015a, ApJ, 805, 130

    Article  ADS  Google Scholar 

  • Koposov S. E., Casey A. R., Belokurov V. et al. 2015b, ApJ, 811, 62

    Article  ADS  Google Scholar 

  • Koposov S. E., Walker M. G., Belokurov V. et al. 2018, MNRAS, 479, 5343

    Article  ADS  Google Scholar 

  • Kravtsov A. V., Klypin A. A., Bullock J. S., Primack J. R. 1998, ApJ, 502, 48

    Article  ADS  Google Scholar 

  • Laevens B. P. M., Martin N. F., Ibata R. A. et al. 2015, ApJL, 802, L18

    Article  ADS  Google Scholar 

  • Laevens B. P. M., Martin N. F., Bernard E. J. et al. 2015, ApJ, 813, 44

    Article  ADS  Google Scholar 

  • Li H., Hammer F., Babusiaux C. et al. 2021, ApJ, 916, 8

    Article  ADS  Google Scholar 

  • Li T. S., Simon J. D., Pace A. B. et al. 2018a, ApJ, 857, 145

    Article  ADS  Google Scholar 

  • Li T. S., Simon J. D., Kuehn K. et al. 2018b, ApJ, 866, 22

    Article  ADS  Google Scholar 

  • Lindegren L., Klioner S. A., Hernández J. et al. 2021, A &A, 649, A2

    Google Scholar 

  • Longeard N., Jablonka P., Arentsen A. et al. 2022, MNRAS, 516, 2348

    Article  ADS  Google Scholar 

  • MacQueen J. B. 1967, in eds Cam L. M. L., Neyman J. 1, Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, p. 281

  • Manwadkar V., Kravtsov A. V. 2022, MNRAS, 516, 3944

    Article  ADS  Google Scholar 

  • Martin N. F., Ibata R. A., Chapman S. C., Irwin M., Lewis G. F. 2007, MNRAS, 380, 281

    Article  ADS  Google Scholar 

  • Martínez-García A. M., del Pino A., Aparicio A., van der Marel R. P., Watkins L. L. 2021, MNRAS, 505, 5884

    Article  ADS  Google Scholar 

  • Massari D., Helmi A. 2018, A &A, 620, A155

    Google Scholar 

  • Mau S., Cerny W., Pace A. B. et al. 2020, ApJ, 890, 136

    Article  ADS  Google Scholar 

  • McConnachie A. W., Venn K. A. 2020a, ApJ, 160, 124

    Article  Google Scholar 

  • McConnachie A. W., Venn K. A. 2020b, Res. Notes Am. Astron. Soc., 4, 229

    ADS  Google Scholar 

  • McInnes L., Healy J. 2017, IEEE, https://doi.org/10.1109/icdmw.2017.12

  • McLachlan G. J., Peel D. 2000, Finite mixture models (New York: Wiley Series in Probability and Statistics)

  • Moore B., Ghigna S., Governato F. et al. 1999, ApJ, 524, L19

    Article  ADS  Google Scholar 

  • Muñoz R. R., Carlin J. L., Frinchaboy P. M. et al. 2006, ApJ, 650, L51

    Article  ADS  Google Scholar 

  • Muñoz R. R., Côté P., Santana F. A. et al. 2018, ApJ, 860, 66

    Article  ADS  Google Scholar 

  • Nadler E. O., Wechsler R. H., Bechtol K. et al. 2020, ApJ, 893, 48

    Article  ADS  Google Scholar 

  • Newton O., Cautun M., Jenkins A., Frenk C. S., Helly J. C. 2018, MNRAS, 479, 2853

    Article  ADS  Google Scholar 

  • Nidever D. L., Dey A., Fasbender K. et al. 2021, AJ, 161, 192

  • Odewahn S. C., Stockwell E. B., Pennington R. L., Humphreys R. M., Zumach W. A. 1992, AJ, 103, 318

  • Pace A. B., Erkal D., Li T. S. 2022, ApJ, 940, 136

    Article  ADS  Google Scholar 

  • Pace A. B., Li T. S. 2019, ApJ, 875, 77

    Article  ADS  Google Scholar 

  • Pasquato M., Milone A. 2019, arXiv e-prints, arXiv:1906.04983

  • Pietrinferni A., Hidalgo S., Cassisi S. et al. 2021, ApJ, 908, 102

    Article  ADS  Google Scholar 

  • Reis I., Rotman M., Poznanski D., Prochaska J., Wolf L. 2021, Astron. Comput., 34, 100437

  • Rey M. P., Pontzen A., Agertz O. et al. 2019, ApJL, 886, L3

    Article  ADS  Google Scholar 

  • Roderick T. A., Mackey A. D., Jerjen H., DaCosta G. S. 2016, MNRAS, 461, 3702

    Article  ADS  Google Scholar 

  • Rubin A., Gal-Yam A. 2016, ApJ, 828, 111

    Article  ADS  Google Scholar 

  • Sales L. V., Navarro J. F., Kallivayalil N., Frenk C. S. 2017, MNRAS, 465, 1879

    Article  ADS  Google Scholar 

  • Schlegel D. J., Finkbeiner D. P., Davis M. 1998, ApJ, 500, 525

  • Simon J. D. 2018, ApJ, 863, 89

  • Simon J. D., Drlica-Wagner A., Li T. S. et al. 2015, ApJ, 808, 95

    Article  ADS  Google Scholar 

  • Simon J. D., Li T. S., Drlica-Wagner A. et al. 2017, ApJ, 838, 11

  • Simon J. D., Li T. S., Erkal D. et al. 2020, ApJ, 892, 137

  • Taylor M. 2011, TOPCAT: Tool for Operations on Catalogues and Tables Astrophysics Source Code Library, record ascl:1101.010, ascl:1101.010

  • Tollerud E. J., Bullock J. S., Strigari L. E., Willman B. 2008, ApJ, 688, 277

    Article  ADS  Google Scholar 

  • Torrealba G., Belokurov V., Koposov S. E. et al. 2018, MNRAS, 475, 5085

  • Vasconcellos E. C., de Carvalho R. R., Gal R. R. et al. 2011, AJ, 141, 189

  • Vitral E. 2021, MNRAS, 504, 1355

    Article  ADS  Google Scholar 

  • Waller F., Venn K., Sestito F. et al. 2022, arXiv e-prints, arXiv:2208.07948

  • Walsh S. M., Willman B., Sand D., et al. 2008, ApJ, 688, 245.

  • Weir N., Fayyad U. M., Djorgovski S. 1995, AJ, 109, 2401

  • Weisz D. R., Dolphin A. E., Skillman E. D. et al. 2015, ApJ, 804, 136

    Article  ADS  Google Scholar 

  • York D. G., Adelman J., Anderson John E. J. et al. 2000, AJ, 120, 1579

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Josh Simon and Tom Brown for sharing the relevant data, which includes satellite membership from their spectroscopic study. This work has made use of public archival data from the European Space Agency (ESA) mission Gaia DR3 (http://www.cosmos.esa.int/gaia) and the Dark Energy Survey (DES: https://www.darkenergysurvey.org/). The python packages used in this project are astropy (Astropy Collaboration et al. 2013), scikit-learn (https://scikit-learn.org) and hdbscan (https://pypi.org/project/hdbscan/). This research has used the VizieR catalog access tool, CDS, NASA’s Astrophysics Data System Bibliographic Services and TOPCAT software18 (Taylor 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devika K. Divakar.

Appendices

Appendix A: Selected hyperparameters

See Table 3.

Table 3 Optimized hyperparameters for DBSCAN and HDBSCAN.
Fig. 10
figure 10

Same as Figure 4, but for CarIII.

Fig. 11
figure 11

Same as Figure 4, but for CarII.

Appendix B: Resultant plots

Fig. 12
figure 12

Same as Figure 4, but for BoöII.

Fig. 13
figure 13

Same as Figure 4, but for BoöIII.

Fig. 14
figure 14

Same as Figure 4, but for TucIV.

Fig. 15
figure 15

Same as Figure 4, but for BoöI.

Fig. 16
figure 16

Comparison of the median proper motion of candidate members from DBSCAN (orange square) and HDBSCAN (cyan square) with other literature values (filled circles with different colors). The error bar shows the standard deviation derived from the proper motion of candidate members. Reference: (1) Kallivayalil et al. (2018; 2) Carlin & Sand (2018; 3) Massari & Helmi (2018; 4) Gaia Collaboration et al. (2018b; 5) Fritz et al. (2018; 6) Simon (2018; 7) Pace & Li (2019); (8) Simon et al. (2020; 9) McConnachie & Venn (2020a; 10) McConnachie & Venn (2020b; 11) Vitral (2021; 12) Li et al. (2021; 13) Bruce et al. (2023; 14) Martínez-García et al. (2021; 15) Longeard et al. (2022; 16) Battaglia et al. (2022) and (17) Pace et al. (2022).

The resultant plots for UFDs using DBSCAN and HDBSCAN algorithms are shown in Figures 915. Figure 16 shows the calculated proper motion from the identified candidates of each UFD using DBSCAN and HDBSCAN in comparison with the literature values.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divakar, D.K., Saraf, P., Sivarani, T. et al. Possibilities of identifying members from Milky Way satellite galaxies using unsupervised machine learning algorithms. J Astrophys Astron 45, 5 (2024). https://doi.org/10.1007/s12036-023-09990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09990-4

Keywords

Navigation