Skip to main content
Log in

Protoplanetary disks around young stellar and substellar objects in the \({\sigma }\) Orionis cluster

  • PRE-MAIN SEQUENCE STARS
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Understanding the evolution and dissipation of protoplanetary disks are crucial in star and planet formation studies. We report the protoplanetary disk population in the nearby young \(\sigma \) Orionis cluster (\(d\sim 408\) pc; \(\textrm{age}\sim 1.8\) Myr) and analyse the disk properties, such as dependence on stellar mass and disk evolution. We utilize the comprehensive census of 170 spectroscopic members of the region refined using astrometry from Gaia DR3 for a wide mass range of \(\sim \)19–0.004 \(M_\odot \). Using the near-infrared (2MASS) and mid-infrared (WISE) photometries, we classify the sources based on the spectral index, into class I, class II, flat spectrum and class III young stellar objects. The frequency of sources hosting a disk with stellar mass <2 \(M_\odot \) in this region is \(41\pm 7\)%, which is consistent with the disk fraction estimated in previous studies. We see that there is no significant dependence of disk fraction on stellar mass among T Tauri stars (<2 \(M_\odot \)), but we propose rapid disk depletion around higher mass stars (>2 \(M_\odot \)). Furthermore, we found the lowest mass of a disk-bearing object to be \(\sim \)20 \(M_{\textrm{Jup}}\) and the pronounced disk-fraction among the brown dwarf population hints at the formation scenario that brown dwarfs form similar to low-mass stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://svo2.cab.inta-csic.es/theory/fps/.

References

  • Allers K. N., Liu M. C. 2020, PASP, 132, 104401

    Article  ADS  Google Scholar 

  • Andre P., Ward-Thompson D., Barsony M. 2000, prpl.conf., 59

  • André P., Ward-Thompson D., Greaves J. 2012, Sci., 337, 69

    Article  ADS  Google Scholar 

  • Andrews S. M. 2020, ARA &A, 58, 483

    ADS  Google Scholar 

  • Ansdell M., Williams J. P., Manara C. F., et al. 2017, AJ, 153, 240

  • Baraffe I., Chabrier G., Barman T. S., Allard F., Hauschildt P. H. 2003, A &A, 402, 701

    ADS  Google Scholar 

  • Baraffe I., Homeier D., Allard F., Chabrier G. 2015, A &A, 577, A42

    Google Scholar 

  • Béjar V. J. S., Zapatero Osorio M. R., Rebolo R. 2004, AN, 325, 705

  • Bouvier J., Alencar S. H. P., Harries T. J., Johns-Krull C. M., Romanova M. M. 2007, prpl.conf., 479

  • Caballero J. A., Béjar V. J. S., Rebolo R., et al. 2007, A &A, 470, 903

  • Calvet N., Muzerolle J., Briceño C., et al. 2004, AJ, 128, 1294

  • Cardelli J. A., Clayton G. C., Mathis J. S. 1989, ApJ, 345, 245

  • Currie T., Lada C. J., Plavchan P., et al. 2009, ApJ, 698, 1

  • Cutri R. M., Skrutskie M. F., van Dyk S., et al. 2003, yCat, II/246

  • Cutri R. M., et al. 2012, yCat, II/311

  • Dahm S. E., Hillenbrand L. A. 2007, AJ, 133, 2072

  • Damian B., Jose J., Samal M. R., et al. 2021, MNRAS, 504, 2557

  • Damian B., Jose J., Biller B. et al. 2023, ApJ, 951, 139

    Article  ADS  Google Scholar 

  • Das S. R., Jose J., Samal M. R., Zhang S., Panwar N. 2021, MNRAS, 500, 3123

  • Das S. R., Gupta S., Prakash P., Samal M., Jose J. 2023, ApJ, 948, 7

    Article  ADS  Google Scholar 

  • Dubber S., Biller B., Allers K., et al. 2021, MNRAS, 505, 4215

  • Esplin T. L., Luhman K. L. 2017, AJ, 154, 134

  • Esplin T. L., Luhman K. L. 2022, AJ, 163, 64

  • Fabricius C., Luri X., Arenou F., et al. 2021, A &A, 649, A5

  • Filippazzo J. C., Rice E. L., Faherty J., et al. 2015, ApJ, 810, 158

  • Frank A., Ray T. P., Cabrit S., et al. 2014, prpl.conf., 451

  • Furlan E., Hartmann L., Calvet N., et al. 2006, ApJS, 165, 568

  • Gaia Collaboration 2022, yCat, I/355

  • Greene T. P., Wilking B. A., Andre P., Young E. T., Lada C. J. 1994, ApJ, 434, 614

    Article  ADS  Google Scholar 

  • Gupta S., Jose J., More S., et al. 2021, MNRAS, 508, 3388

  • Guzmán-Díaz J., Mendigutía I., Montesinos B., et al. 2021, A &A, 650, A182

  • Han C., Jung Y. K., Udalski A., et al. 2013, ApJ, 778, 38

  • Hartigan P., Edwards S., Ghandour L. 1995, ApJ, 452, 736

  • Hartmann L. 2009, apsf.book

  • Hartmann L., Herczeg G., Calvet N. 2016, ARA &A, 54, 135

  • Herczeg G. J., Hillenbrand L. A. 2014, ApJ, 786, 97

    Article  ADS  Google Scholar 

  • Hernández J., Calvet N, Briceño C., et al. 2007, ApJ, 671, 1784

  • Hernández J., Hartmann L., Megeath T., et al. 2007, ApJ, 662, 1067

  • Hillenbrand L. A., Strom S. E., Calvet N., et al. 1998, AJ, 116, 1816

  • Johnson J. A., Aller K. M., Howard A. W., Crepp J. R. 2010, PASP, 122, 905

    Article  ADS  Google Scholar 

  • Jose J., Biller B. A., Albert L., et al. 2020, ApJ, 892, 122

  • Koenig X. P., Leisawitz D. T. 2014, ApJ, 791, 131

    Article  ADS  Google Scholar 

  • Koenig X., Hillenbrand L. A., Padgett D. L., DeFelippis D. 2015, AJ, 150, 100

  • Kordopatis G., Schultheis M., McMillan P. J., et al. 2023, A &A, 669, A104

  • Lada C. J. 1987, IAUS, 115, 1

    ADS  Google Scholar 

  • Lada E. A., Lada C. J. 1995, AJ, 109, 1682

  • Lada C. J., Muench A. A., Luhman K. L., et al. 2006, AJ, 131, 1574

  • Lalchand B., Chen W.-P., Biller B. A., et al. 2022, AJ, 164, 125

  • Luhman K. L., Lada C. J., Hartmann L., et al. 2005, ApJL, 631, L69

  • Luhman K. L., Hernández J., Downes J. J., Hartmann L., Briceño C. 2008, ApJ, 688, 362

    Article  ADS  Google Scholar 

  • Luhman K. L. 2012, ARA &A, 50, 65

    ADS  Google Scholar 

  • Manara C. F., Frasca A., Venuti L., et al. 2021, A &A, 650, A196

  • Meyer M. R., Backman D. E., Weinberger A. J., Wyatt M. C. 2007, prpl.conf., 573

  • Michel A., van der Marel N., Matthews B. C. 2021, ApJ, 921, 72

    Article  ADS  Google Scholar 

  • Miotello A., Kamp I., Birnstiel T., Cleeves L. I., Kataoka A. 2022, arXiv, arXiv:2203.09818

  • Monteiro H., Dias W. S., Moitinho A., et al. 2020, MNRAS, 499, 1874

  • Muench A. A., Alves J., Lada C. J., Lada E. A. 2001, ApJL, 558, L51

    Article  ADS  Google Scholar 

  • Natta A., Testi L., Comerón F., et al. 2002, A &A, 393, 597

  • Padoan P., Nordlund Å. 2002, ApJ, 576, 870

  • Panwar N., Samal M. R., Pandey A. K., et al. 2017, MNRAS, 468, 2684

  • Pascucci I., Cabrit S., Edwards S., et al. 2022, arXiv, arXiv:2203.10068

  • Pecaut M. J., Mamajek E. E. 2013, ApJS, 208, 9

    Article  ADS  Google Scholar 

  • Peña Ramírez K., Béjar V. J. S., Zapatero Osorio M. R., Petr-Gotzens M. G., Martín E. L. 2012, ApJ, 754, 30

  • Penoyre Z., Belokurov V., Evans N. W. 2022, MNRAS, 513, 5270

    Article  ADS  Google Scholar 

  • Puget P., Stadler E., Doyon R., et al. 2004, SPIE, 5492, 978

  • Rayner J. T., Toomey D. W., Onaka P. M., et al. 2003, PASP, 115, 362

  • Reipurth B., Clarke C. 2001, AJ, 122, 432

  • Ribas Á., Bouy H., Merín B. 2015, A &A, 576, A52

    Google Scholar 

  • Rilinger A. M., Espaillat C. C. 2021, ApJ, 921, 182

    Article  ADS  Google Scholar 

  • Sherry W. H., Walter F. M., Wolk S. J., Adams N. R. 2008, AJ, 135, 1616

  • Scholz A., Jayawardhana R. 2008, ApJL, 672, L49

    Article  ADS  Google Scholar 

  • Scholz A., Muzic K., Jayawardhana R., Almendros-Abad V., Wilson I. 2023, arXiv, arXiv:2303.12451

  • Shvartzvald Y., Yee J. C., Calchi Novati S., et al. 2017, ApJL, 840, L3

  • Spitzer Science Center (SSC), Infrared Science Archive (IRSA) 2021, yCat, II/368

  • Stamatellos D., Maury A., Whitworth A., André P. 2011, MNRAS, 413, 1787

    Article  ADS  Google Scholar 

  • Stoop M., Kaper L., de Koter A., et al. 2023, A &A, 670, A108

  • Wang S., Chen X. 2019, ApJ, 877, 116

    Article  ADS  Google Scholar 

  • Williams J. P., Cieza L. A. 2011, ARA &A, 49, 67

    ADS  Google Scholar 

  • Winter A. J., Clarke C. J., Rosotti G., et al. 2018, MNRAS, 478, 2700

  • Whitworth A. P., Zinnecker H. 2004, A &A, 427, 299

  • Yao Y., Meyer M. R., Covey K. R., Tan J. C., Da Rio N. 2018, ApJ, 869, 72

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for the constructive report, which has helped to improve the overall quality of the paper. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada and France, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work is based (in part) on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. BD is thankful to the Center for Research, CHRIST (Deemed to be University), Bangalore, India. JJ acknowledges the financial support received through the DST-SERB grant SPG/2021/003850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda Damian.

Additional information

This article is part of the Special Issue on “Star formation studies in the context of NIR instruments on 3.6 m DOT”.

Appendix: Details of members in \({\sigma }\) Orionis cluster

Appendix: Details of members in \({\sigma }\) Orionis cluster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damian, B., Jose, J., Biller, B. et al. Protoplanetary disks around young stellar and substellar objects in the \({\sigma }\) Orionis cluster. J Astrophys Astron 44, 77 (2023). https://doi.org/10.1007/s12036-023-09968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09968-2

Keywords

Navigation