Skip to main content
Log in

Effects of nonadiabatic dust charge variation on cylindrical/spherical shock waves propagating in a hybrid Cairns–Tsallis plasma

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

A dusty plasma, composed of charge-fluctuating dust, and hybrid Cairns–Tsallis ions and Boltzmann electrons is considered to study the cylindrical/spherical dust acoustic shock waves. The reductive perturbation method is used to derive the cylindrical/spherical KdV–Burgers equation. It is important to note here that the main cause of dissipation term in the given plasma model is dust charge fluctuation. Nonplanar KdV–Burgers equation is later on solved by the weighted residual method in the limits of weak dissipation. The solution demonstrates that the wave attenuates quicker as one approaches the cylinder’s axis or the sphere’s center, and the consequences are depicted in various 2D graphics. We have studied the various parametric influences on such shock structure and also showed how the gradual variations of these parameters affect the generation and structure of the shocks in their respective domain. Much of the experiments on dusty plasma with nonadiabatic dust charge fluctuation will benefit from the parametric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allen J. E. 1992, Phys. Scr., 45, 497

    Article  ADS  Google Scholar 

  • Amour R., Tribeche M., Shukla P. K. 2012, Astrophys. Space Sci., 338, 287

    Article  ADS  Google Scholar 

  • Bala P., Gill T. S., Bains A. S., Kaur H. 2017, Indian J. Phys., 91, 1625

    Article  ADS  Google Scholar 

  • Baluku T. K., Hellberg M. A., Mace R. L. 2008, Phys. Plasmas, 15, 033701

    Article  ADS  Google Scholar 

  • Bansal S., Aggarwal M., Gill T. S. 2018, Braz. J. Phys., 48, 597

    Article  ADS  Google Scholar 

  • Bansal S., Aggarwal M., Gill T. S. 2019, Contrib. Plasma Phys., 59, e201900047

  • Bansal S., Aggarwal M. 2019, Pramana – J. Phys., 92, 49

  • Bansal S., Aggarwal M., Gill T. S. 2020, Phys. Plasmas, 27, 083704

  • Demiray H., El-Zaher E. R. 2020, Results Phys. 18, 103293

    Article  Google Scholar 

  • El-Labany S. K., Diab A. M., El-Shamy E. F. 2002, Astrophys. Space Sci., 282, 595

  • El-Hanbaly A. M., El-Shewy E. K., Sallah M., Darweesh H. F. 2016, Commun. Theor. Phys. J. Plasma Phys., 65, 606

  • Ergun R., Carlson B., McFadden M. 1998, Geophys. Res. Lett., 25, 2025

  • Ghosh S., Chaudhuri T. K., Sarkar S., Khan M., Gupta M. R. 2002, Phys. Rev. E, 46, 037401

  • Gill T. S., Kaur H. 2000, Pramana, 55, 855

    Article  ADS  Google Scholar 

  • Gill T. S., Bansal S. 2020, Chaos Solitons Fract. 147, 110953

  • Goertz C. K., Shan L., Havnes O. 1998, Geophys. Res. Lett., 15, 84

  • Gupta M. R., Sarkar S., Ghosh S., Debnath M., Khan M. 2001, Phys. Rev. E, 63, 046406

  • Havnes O., Aslaksen T., Hartquist T. W., et al. 1995, J. Geophys. Res., 100, 1731

  • Kakati M., Goswami K. S. 1998, Phys. Plasmas, 5, 4508

  • Kruger H. 2003, Jupiter’s Dust Disc. An Astrophysical Laboratory (Shaker Verlag: Aachen)

  • Kumar R., Malik H. K., Singh K. 2012, Phys. Plasmas, 19, 012114

  • Li F., Havnes O. 2001, Phys. Rev. E, 64, 066407, 1

    Google Scholar 

  • Losseva T. V., Popel S. I., Golub A. P. 2012, Plasma Phys. Rep. 38, 729

  • Losseva T. V., Popel S. I., Golub A. P. 2020, Plasma Phys. Rep. 46, 1007

  • Lotko W., Kennel C. F. 1983, J. Geophys. Res., 88, 381

    Article  ADS  Google Scholar 

  • Luo Q-Z., D’Angelo N., Merlino R. L. 1999, Phys. Plasmas, 6, 3455

  • Mamun A. A., Shukla P. K. 2002, Geophys. Res. Lett., 29, 1870, https://doi.org/10.1029/2002GL015219

    Article  ADS  Google Scholar 

  • Mamun A. A. 2008, Phys. Lett. A, 372, 686

    Article  ADS  Google Scholar 

  • Mamun A. A., Shukla P. K. 2011, J. Plasma Phys., 77, 437

    Article  ADS  Google Scholar 

  • Merriche A., Tribeche M. 2017, Ann. Phys., 376, 436

    Article  ADS  Google Scholar 

  • Nakamura Y., Bailung H., Shukla P. K. 1999, Phys. Rev. Lett., 83, 1602

  • Popel S. I., Tsytovich V. N. 1999, Astrophys. Space Sci., 264, 219

    Article  ADS  Google Scholar 

  • Popel S. I., Golub A. P., Losseva T. V. 2001, JETP Lett., 74, 362

  • Popel S. I., Andreev S. N., Gisko A. A., Golub A. P., Losseva T. V. 2004, Plasma Phys. Rep., 30, 284

  • Popel S. I., Gisko A. A. 2006, Nonlinear Process. Geophys., 13, 223

    Article  ADS  Google Scholar 

  • Rao N. N., Shukla P. K., Yu M. Y. 1990, Planet Space Sci., 38, 543

  • Sakanaka P. H., Shukla P. K. 2000, Phys. Scr., T84, 181

    Article  ADS  Google Scholar 

  • Sethi P., Singh K., Saini N. S. 2018, Zeitschrift für Naturforschung A, 73, 795

  • Shukla P. K. 2001, Phys. Plasmas, 8, 1791

  • Shukla P. K., Mamun A. A. 2002, Introduction to Dusty Plasma Physics (Institute of Physics: Bristol)

    Book  Google Scholar 

  • Tribeche M., Amour R., Shukla P. K. 2012, Phys. Rev. E, 85, 037401

  • Verheest F. 2000, Waves in Dusty Space Plasmas (Kluwer Academic: Dordrecht)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Aggarwal, M. & Gill, T.S. Effects of nonadiabatic dust charge variation on cylindrical/spherical shock waves propagating in a hybrid Cairns–Tsallis plasma. J Astrophys Astron 43, 29 (2022). https://doi.org/10.1007/s12036-022-09811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09811-0

Keywords

Navigation