Skip to main content
Log in

Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth’s bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth’s bow shock position is found to be ≈14.8 R E along the Sun–Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7c/ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s−1 at 15R E and is equal to 63 km s −1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Axford, W. 1962, J. Geophys. Res., 67, 3791.

    Article  ADS  Google Scholar 

  • Bale, S., Mozer, F., Horbury, T. 2003, Phys. Rev. Lett., 91, 265004.

    Article  ADS  Google Scholar 

  • Baraka, S. 2007, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI.

  • Baraka, S., Ben-Jaffel, L. 2007, J. Geophys. Res. (Space Phys.), 112, 6212.

  • Baraka, S., Ben-Jaffel, L. 2011, Annales Geophysicae, 29, 31.

    Article  ADS  Google Scholar 

  • Baraka, S., Jaffel, L. 2014, in: AGU Fall Meeting Abstracts, Vol. 1, 4222.

  • Baraka, S., Jaffel, L., Dandouras, I. 2013, in: AGU Fall Meeting Abstracts, Vol. 1, 2236.

  • Ben-Jaffel, L., Ballester, G. E. 2014, Astrophys. J. Lett., 785, L30.

    Article  ADS  Google Scholar 

  • Ben-Jaffel, L., Strumik, M., Ratkiewicz, R., Grygorczuk, J. 2013, APJ, 779, 130.

    Article  ADS  Google Scholar 

  • Birdsall, C. K., Langdon, A. B. 2005, Plasma Physics via Computer Simulaition (CRC Press).

  • Bonifazi, C., Moreno, G. 1981, J. Geophys. Res.: Space Phys., (1978–2012), 86, 4405.

  • Buneman, O. 1993, Simulation Techniques and Software, 67.

  • Buneman, O., Barnes, C., Green, J., Nielsen, D. 1980, J. Comput. Phys., 38, 1.

    Article  ADS  MathSciNet  Google Scholar 

  • Buneman, O., Neubert, T., Nishikawa, K.-I. 1992, Plasma Science, IEEE Trans., 20, 810.

  • Buneman, O., Nishikawa, K.-I., Neubert, T. 1995, Space Plasmas: Coupling Between Small and Medium Scale Processes, 347.

  • Bykov, A., Treumann, R. 2011, Astron. Astrophys. Rev., 19, 1.

  • Büchner, J., Dum, C., Scholer, M. 2003, Space plasma simulation, Vol. 615 (Springer).

  • Cai, D., Esmaeili, A., Lembège, B., Nishikawa, K.-I. 2015, J. Geophys. Res.: Space Phys., 120, 8368.

  • Cai, D., Li, Y., Nishikawa, K.-I. et al. 2003, in: Space Plasma Simulation (Springer), 25–53.

  • Cai, D., Yan, X., Nishikawa, K.-I., Lembège, B. 2006, Geophys. Res. Lett., 33.

  • Chapman, S., Ferraro, V. C. A. 1930, Nature, 126, 129.

    Article  ADS  Google Scholar 

  • Dmitriev, A., Chao, J., Wu, D. 2003, J. Geophys. Res., 108, 1464.

    Article  Google Scholar 

  • Dungey, J. 1962, J. Physical Soc. Japan Suppl., 17, 15.

    Google Scholar 

  • Ellison, D. C., Giacalone, J., Burgess, D., Schwartz, S. 1993, J. Geophys. Res.: Space Phys. (1978–2012), 98, 21085.

  • Filbert, P. C., Kellogg, P. J. 1979, J. Geophys. Res., 84, 1369.

    Article  ADS  Google Scholar 

  • Fitzenreiter, R. J., Klimas, A. J., Scudder, J. D. 1984, GRL, 11, 496.

    Article  ADS  Google Scholar 

  • Fontaine, D., Turc, L., Savoini, P. 2015, in; EGU General Assembly Conference Abstracts, Vol. 17, 5908.

  • Gombosi, T., Zeeuw, D. D., Groth, C. 2000, IEEE Trans. Plasma Sci.

  • Janhunen, P., Palmroth, M., Laitinen, T. et al. 2012, J. Atmos. Solar-Terrestrial Phys., 80, 48.

  • Jelínek, K., Němeček, Z., Šafránková, J. et al. 2010, J. Geophys. Res. (Space Phys.), 115, 10203.

  • Keika, K., Nakamura, R., Baumjohann, W. et al. 2009, J. Geophys. Res. (Space Phys.), 114.

  • Kellogg, P. J. 1962, J. Geophys. Res., 67, 3805.

  • Kowal, G., Dal Pino, E. d. G., Lazarian, A. 2011, AJ, 735, 102.

    Article  Google Scholar 

  • Krasnoselskikh, V., Balikhin, M., Walker, S. N. et al. 2013, Space Sci. Rev., 178, 535.

    Article  ADS  Google Scholar 

  • Kronberg, E., Bučík, R., Haaland, S. et al. 2011, J. Geophys. Res.: Space Phys. (1978–2012), 116.

  • Kullen, A., Janhunen, P. et al. 2004, in: Ann. Geophys., Vol. 22, 951–970.

  • Leboeuf, J., Tajima, T., Kennel, C. F., Dawson, J. 1978, Geophys. Res. Lett., 5, 609.

  • Lindman, E. 1975, J. Comput. Phys., 18, 66.

    Article  ADS  Google Scholar 

  • Mann, I., Milling, D., Rae, I. et al. 2008, Space Science Reviews, 141, 413.

  • Maynard, N. C., Farrugia, C. J., Burke, W. J. et al. 2011, J. Geophys. Res.: Space Phys. (1978–2012), 116.

  • Meziane, K., Hamza, A. M., Maksimovic, M., Alrefay, T. Y. 2015, J. Geophys. Res.: Space Phys., 120, 1229.

    Article  ADS  Google Scholar 

  • Meziane, K., Wilber, M., Hamza, A. et al. 2007, J. Geophys. Res., 112, A01101.

    Article  ADS  Google Scholar 

  • Moritaka, T., Kajimura, Y., Usui, H. et al. 2012, Phys. Plasmas (1994–present), 19, 032111.

  • Nishikawa, K.-I. 1997, J. Geophys. Res.: Space Phys. (1978–2012), 102, 17631.

  • Omidi, N., Blanco-Cano, X., Russell, C. 2005, J. Geophys. Res.: Space Phys. (1978–2012), 110.

  • Omidi, N., Sibeck, D., Blanco-Cano, X. et al. 2013, J. Geophys. Res.: Space Phys., 118, 823.

  • Palmroth, M., Janhunen, P., Pulkkinen, T. et al. 2005, in: Annales Geophysicae, Vol. 23 (Copernicus GmbH), 2051–2068.

  • Palmroth, M., Pulkkinen, T., Janhunen, P., Wu, C.-C. 2002, J. Geophys. Res., 108, SMP24.

    Google Scholar 

  • Parks, G. K. 2004, Space Science Reviews, 113, 97.

  • Paschmann, G., Sckopke, N., Papamastorakis, I. et al. 1981, J. Geophys. Res.: Space Phys. (1978–2012), 86, 4355.

  • Peredo, M., Slavin, J., Mazur, E. Curtis, S. 1995, J. Geophys. Res.: Space Phys. (1978–2012), 100, 7907.

    Article  ADS  Google Scholar 

  • Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R., Zelenyi, L. 2015, Space Science Reviews, 188, 311.

    Article  ADS  Google Scholar 

  • Pokhotelov, D., von Alfthan, S., Kempf, Y. et al. 2013, in: Annales Geophysicae, Vol. 31 (Copernicus GmbH), 2207–2212.

  • Pritchett, P. L. 2000, Plasma Science, IEEE Trans., 28, 1976.

    Article  ADS  Google Scholar 

  • Rojas-Castillo, D., Blanco-Cano, X., Kajdič, P., Omidi, N. 2013, J. Geophys. Res.: Space Phys.

  • Samsonov, A. A. 2007, Geomagnetism and Aeronomy, 47, 316.

    Article  ADS  Google Scholar 

  • Savoini, P., Lembege, B., Stienlet, J. 2013, J. Geophys. Res. (Space Phys.), 118, 1132.

    Article  ADS  Google Scholar 

  • Schreiner, C., Spanier, F. 2014, Comput. Phys. Commun.

  • Seki, Y., Nishino, M., Fujimoto, M. et al. 2009, J. Geophys. Res.: Space Phys. (1978–2012), 114.

  • Shaikhislamov, I., Antonov, V., Zakharov, Y. P. et al. 2011, arXiv preprint arXiv:1110.4461.

  • Sitnov, M. 2015, private communication.

  • Treumann, R. 2009, A&A Review, 17, 409.

    Article  ADS  Google Scholar 

  • Vapirev, A., Lapenta, G., Divin, A. et al. 2013, J. Geophys. Res.: Space Phys.

  • Villasenor, J., Buneman, O. 1992, Comput. Phys. Commun., 69, 306.

  • Welling, D., Liemohn, M., Toth, G., Glocer, A. 2013, in: AGU Fall Meeting Abstracts, Vol. 1, 2105.

  • Winglee, R., Lewis, W., Lu, G. 2005, J. Geophys. Res.: Space Phys. (1978–2012), 110.

  • Wodnicka, E. 2009, in: Annales Geophysicae, Vol. 27 (Copernicus GmbH), 2331–2339.

Download references

Acknowledgements

This work would have not been done without the insights and hard work on code development by Dr Lotfi Ben-Jaffel, IAP. The author would also like to thank the IAP-CNRS (Paris, France), David Sibeck of NGFC-NASA, Bob Clauer of VT and Douglas Staley, President of NIA for their continuous support and insights, and Zamala program and Bank of Palestine for supporting his research visits to the US.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleiman Baraka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraka, S. Large Scale Earth’s Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model. J Astrophys Astron 37, 14 (2016). https://doi.org/10.1007/s12036-016-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-016-9389-6

Keywords

Navigation