Skip to main content
Log in

IRAK-M Plays A Role in the Pathology of Amyotrophic Lateral Sclerosis Through Suppressing the Activation of Microglia

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglial activation plays a crucial role in the disease progression in amyotrophic lateral sclerosis (ALS). Interleukin receptor-associated kinases-M (IRAK-M) is an important negative regulatory factor in the Toll-like receptor 4 (TLR4) pathway during microglia activation, and its mechanism in this process is still unclear. In the present study, we aimed to investigate the dynamic changes of IRAK-M and its protective effects for motor neurons in SOD1-G93A mouse model of ALS. qPCR (Real-time Quantitative PCR Detecting System) were used to examine the mRNA levels of IRAK-M in the spinal cord in both SOD1-G93A mice and their age-matched wild type (WT) littermates at 60, 100 and 140 days of age. We established an adeno-associated virus 9 (AAV9)-based platform by which IRAK-M was targeted mostly to microglial cells to investigate whether this approach could provide a protection in the SOD1-G93A mouse. Compared with age-matched WT mice, IRAK-M mRNA level was elevated at 100 and 140 days in the anterior horn region of spinal cords in the SOD1-G93A mouse. AAV9-IRAK-M treated SOD1-G93A mice showed reduction of IL-1β mRNA levels and significant improvements in the numbers of spinal motor neurons in spinal cord. Mice also showed previously reduction of muscle atrophy. Our data revealed the dynamic changes of IRAK-M during ALS pathological progression and demonstrated that an AAV9-IRAK-M delivery was an effective and translatable therapeutic approach for ALS. These findings may help identify potential molecular targets for ALS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Availability of data and materials. The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206. https://doi.org/10.1038/nature20413

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LS (2008) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 105(21):7594–7599. https://doi.org/10.1073/pnas.0802556105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Maniatis S, Äijö T, Vickovic S, Braine C, Kang K, Mollbrink A, Fagegaltier D, Andrusivová Ž et al (2019) Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364(6435):89–93. https://doi.org/10.1126/science.aav9776

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM (2015) Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 12:90. https://doi.org/10.1186/s12974-015-0310-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK et al (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023. https://doi.org/10.1016/j.neuron.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gosu V, Basith S, Durai P, Choi S (2012) Molecular evolution and structural features of IRAK family members. PLoS ONE 7(11):e49771. https://doi.org/10.1371/journal.pone.0049771

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kobayashi K, Hernandez LD, Galán JE, Janeway CA Jr, Medzhitov R, Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110(2):191–202. https://doi.org/10.1016/s0092-8674(02)00827-9

    Article  CAS  PubMed  Google Scholar 

  8. Zhou H, Yu M, Zhao J, Martin BN, Roychowdhury S, McMullen MR, Wang E, Fox PL et al (2016) IRAKM-Mincle axis links cell death to inflammation: Pathophysiological implications for chronic alcoholic liver disease. Hepatology 64(6):1978–1993. https://doi.org/10.1002/hep.28811

    Article  CAS  PubMed  Google Scholar 

  9. Rothschild DE, Zhang Y, Diao N, Lee CK, Chen K, Caswell CC, Slade DJ, Helm RF et al (2017) Enhanced mucosal defense and reduced tumor burden in mice with the compromised negative regulator IRAK-M. EBioMedicine 15:36–47. https://doi.org/10.1016/j.ebiom.2016.11.039

    Article  PubMed  Google Scholar 

  10. Zhang M, Chen W, Zhou W, Bai Y, Gao J (2017) Critical role of IRAK-M in regulating antigen-induced airway inflammation. Am J Respir Cell Mol Biol 57(5):547–559. https://doi.org/10.1165/rcmb.2016-0370OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyu C, Zhang Y, Gu M, Huang Y, Liu G, Wang C, Li M, Chen S, Pan S, Gu Y (2018) IRAK-M Deficiency exacerbates ischemic neurovascular injuries in experimental stroke mice. Front Cell Neurosci 12:504. https://doi.org/10.3389/fncel.2018.00504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu B, Gu Y, Pei S, Peng Y, Chen J, Pham LV, Shen HY, Zhang J, Wang H (2019) Interleukin-1 receptor associated kinase (IRAK)-M -mediated type 2 microglia polarization ameliorates the severity of experimental autoimmune encephalomyelitis (EAE). J Autoimmun 102:77–88. https://doi.org/10.1016/j.jaut.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  13. Beers DR, Appel SH (2019) Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 18(2):211–220. https://doi.org/10.1016/S1474-4422(18)30394-6

    Article  CAS  PubMed  Google Scholar 

  14. Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD, Barres BA (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11(1):3753. https://doi.org/10.1038/s41467-020-17514-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meissner F, Molawi K, Zychlinsky A (2010) Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci USA 107(29):13046–13050. https://doi.org/10.1073/pnas.1002396107

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Yin HZ, Hsu CI, Yu S, Rao SD, Sorkin LS, Weiss JH (2012) TNF-α triggers rapid membrane insertion of Ca(2+) permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury. Exp Neurol 238(2):93–102. https://doi.org/10.1016/j.expneurol.2012.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J, Calingasan NY, Schafer P et al (2006) Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. The Journal of neuroscience 26(9):2467–2473. https://doi.org/10.1523/JNEUROSCI.5253-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. https://doi.org/10.1186/1742-2094-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guidotti G, Scarlata C, Brambilla L, Rossi D (2021) Tumor necrosis factor alpha in amyotrophic lateral sclerosis: friend or foe? Cells 10(3):518. https://doi.org/10.3390/cells10030518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han Y, Ripley B, Serada S, Naka T, Fujimoto M (2016) Interleukin-6 deficiency does not affect motor neuron disease caused by superoxide dismutase 1 mutation. PLoS ONE 11(4):e0153399. https://doi.org/10.1371/journal.pone.0153399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su LC, Xu WD, Huang AF (2020) IRAK family in inflammatory autoimmune diseases. Autoimmun Rev 19(3):102461. https://doi.org/10.1016/j.autrev.2020.102461

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Hu Y, Deng WW, Sun B (2009) Negative regulation of Toll-like receptor signaling pathway. Microbes Infect 11(3):321–327. https://doi.org/10.1016/j.micinf.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Qin J (2005) Modulation of Toll-interleukin 1 receptor mediated signaling. J Mol Med (Berl) 83(4):258–266. https://doi.org/10.1007/s00109-004-0622-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wang Honghao for kind suggestions to our manuscript and experimental techniques.

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 81901239, 82171354]; and the Science and Technology Projects in Guangzhou [grant number 202201010924].

Author information

Authors and Affiliations

Authors

Contributions

ZX performed most of the experiments. LC mainly performed confocal imaging analysis and pathologic analysis. HY genotyped the animals. LJ and JA performed some preliminary experiments. ZX and LY performed data analysis. ZX and CJ wrote the manuscript. PY conceived the study. All authors contributed to the finalization and approved the content of the manuscript.

Corresponding authors

Correspondence to Jinyu Chen or Yu Peng.

Ethics declarations

Ethics Approval

All animal experiments were conducted according to the Regulations for the Administration of Affairs Concerning Experimental Animals (China) and were approved by the Southern Medical University Animal Ethics Committee.

Consent to Participate

This study did not involve human subjects.

Consent for Publication

This study did not involve patients.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Li, C., Li, Y. et al. IRAK-M Plays A Role in the Pathology of Amyotrophic Lateral Sclerosis Through Suppressing the Activation of Microglia. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04065-z

Keywords

Navigation