Skip to main content

Advertisement

Log in

Role of O-GlcNAcylation in Central Nervous System Development and Injuries: A Systematic Review

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The development of central nervous system (CNS) can form perceptual, memory, and cognitive functions, while injuries to CNS often lead to severe neurological dysfunction and even death. As one of the prevalent post-translational modifications (PTMs), O-GlcNAcylation has recently attracted great attentions due to its functions in regulating the activity, subcellular localization, and stability of target proteins. It has been indicated that O-GlcNAcylation could interact with phosphorylation, ubiquitination, and methylation to jointly regulate the function and activity of proteins. Furthermore, a growing number of studies have suggested that O-GlcNAcylation played an important role in the CNS. During development, O-GlcNAcylation participated in the neurogenesis, neuronal development, and neuronal function. In addition, O-GlcNAcylation was involved in the progress of CNS injuries including ischemic stroke, subarachnoid hemorrhage (SAH), and intracerebral hemorrhage (ICH) and played a crucial role in the improvement of brain damage such as attenuating cognitive impairment, inhibiting neuroinflammation, suppressing endoplasmic reticulum (ER) stress, and maintaining blood–brain barrier (BBB) integrity. Therefore, O-GlcNAcylation showed great promise as a potential target in CNS development and injuries. In this article, we presented a review highlighting the role of O-GlcNAcylation in CNS development and injuries. Hence, on the basis of these properties and effects, intervention with O-GlcNAcylation may be developed as therapeutic agents for CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

References

  1. Elshazzly M, Lopez MJ, Reddy V, Caban O (2023) Embryology, central nervous system. StatPearls, Florida. Bookshelf ID: NBK526024

  2. Rewane A, Munakomi S (2023) Embryology, central nervous system, Malformations. StatPearls, Florida. Bookshelf ID: NBK553171

  3. Gutierrez R (2023) Gap junctions in the brain: hardwired but functionally versatile. Neuroscientist 29(5):554–568. https://doi.org/10.1177/10738584221120804

    Article  PubMed  Google Scholar 

  4. Majmundar VD, Baxi K (2023) Ectodermal dysplasia. StatPearls, Florida. Bookshelf ID: NBK563130

  5. Ren SQ, Li Z, Lin S, Bergami M, Shi SH (2019) Precise long-range microcircuit-to-microcircuit communication connects the frontal and sensory cortices in the mammalian brain. Neuron 104(2):385-401e383. https://doi.org/10.1016/j.neuron.2019.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J et al (2023) Advances in optogenetics applications for central nervous system injuries. J Neurotrauma 40(13–14):1297–1316. https://doi.org/10.1089/neu.2022.0290

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tian M, Mao L, Zhang L (2022) Crosstalk among N6-methyladenosine modification and RNAs in central nervous system injuries. Front Cell Neurosci 16:1013450. https://doi.org/10.3389/fncel.2022.1013450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K (2022) Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation 19(1):242. https://doi.org/10.1186/s12974-022-02602-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu YY, Li Y, Wang L, Zhao Y, Yuan R, Yang MM, Chen Y, Zhang H et al (2023) Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury. Neural Regen Res 18(8):1657–1665. https://doi.org/10.4103/1673-5374.363819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ooi SZY, Spencer RJ, Hodgson M, Mehta S, Phillips NL, Preest G, Manivannan S, Wise MP et al (2022) Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: a systematic review. Neurosurg Rev 45(5):3035–3054. https://doi.org/10.1007/s10143-022-01827-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY, Ni WF, Zhou KL (2023) Functions and mechanisms of cytosolic phospholipase A2 in central nervous system trauma. Neural Regen Res 18(2):258–266. https://doi.org/10.4103/1673-5374.346460

    Article  CAS  PubMed  Google Scholar 

  12. Yang YH, Wen R, Yang N, Zhang TN, Liu CF (2023) Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 29(1):93. https://doi.org/10.1186/s10020-023-00684-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pradeep P, Kang H, Lee B (2023) Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 13(1):154. https://doi.org/10.1038/s41398-023-02446-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corti E, Duarte CB (2023) The role of post-translational modifications in synaptic AMPA receptor activity. Biochem Soc Trans 51(1):315–330. https://doi.org/10.1042/BST20220827

    Article  CAS  PubMed  Google Scholar 

  15. Kozal K, Krzeslak A (2023) Role of O-GlcNAcylation in breast cancer biology. Cell Physiol Biochem 57(3):183–197. https://doi.org/10.33594/000000633

    Article  CAS  PubMed  Google Scholar 

  16. Huang CW, Rust NC, Wu HF, Hart GW (2023) Altered O-GlcNAcylation and mitochondrial dysfunction, a molecular link between brain glucose dysregulation and sporadic Alzheimer’s disease. Neural Regen Res 18(4):779–783. https://doi.org/10.4103/1673-5374.354515

    Article  CAS  PubMed  Google Scholar 

  17. Wenzel DM, Olivier-Van Stichelen S (2022) The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 50(6):1693–1702. https://doi.org/10.1042/BST20220539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee BE, Suh PG, Kim JI (2021) O-GlcNAcylation in health and neurodegenerative diseases. Exp Mol Med 53(11):1674–1682. https://doi.org/10.1038/s12276-021-00709-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balana AT, Pratt MR (2021) Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Biochem J 478(14):2733–2758. https://doi.org/10.1042/BCJ20200609

    Article  CAS  PubMed  Google Scholar 

  20. Cardozo CF, Vera A, Quintana-Pena V, Arango-Davila CA, Rengifo J (2023) Regulation of Tau protein phosphorylation by glucosamine-induced O-GlcNAcylation as a neuroprotective mechanism in a brain ischemia-reperfusion model. Int J Neurosci 133(2):194–200. https://doi.org/10.1080/00207454.2021.1901695

    Article  CAS  PubMed  Google Scholar 

  21. Wu K, Chen L, Qiu Z, Zhao B, Hou J, Lei S, Jiang M, Xia Z (2023) Protective effect and mechanism of Xbp1s regulating HBP/O-GlcNAcylation through GFAT1 on brain injury after SAH. Biomedicines 11 (5). https://doi.org/10.3390/biomedicines11051259

  22. Xu J, Du H, Shi H, Song J, Yu J, Zhou Y (2023) Protein O-glycosylation regulates diverse processes in plants. J Exp Bot. https://doi.org/10.1093/jxb/erad187

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS (2023) O-GlcNAc dynamics: the sweet side of protein trafficking regulation in mammalian cells. Cells 12 (10). https://doi.org/10.3390/cells12101396

  24. Saunders H, Dias WB, Slawson C (2023) Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 299(11):105330. https://doi.org/10.1016/j.jbc.2023.105330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim DY, Park J, Han IO (2023) Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 325(4):C981–C998. https://doi.org/10.1152/ajpcell.00191.2023

    Article  CAS  PubMed  Google Scholar 

  26. Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E (2023) The hexosamine biosynthesis pathway: regulation and function. Genes 14 (4). https://doi.org/10.3390/genes14040933

  27. Chen J, Dong X, Cheng X, Zhu Q, Zhang J, Li Q, Huang X, Wang M et al (2021) Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. Cell Rep 34(13):108905. https://doi.org/10.1016/j.celrep.2021.108905

    Article  CAS  PubMed  Google Scholar 

  28. Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259(5):3308–3317

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Li Y, Hou C, Wu C (2021) O-GlcNAcAtlas: a database of experimentally identified O-GlcNAc sites and proteins. Glycobiology 31(7):719–723. https://doi.org/10.1093/glycob/cwab003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ran Z, Zhang L, Dong M, Zhang Y, Chen L, Song Q (2023) O-GlcNAcylation: a crucial regulator in cancer-associated biological events. Cell Biochem Biophys 81(3):383–394. https://doi.org/10.1007/s12013-023-01146-z

    Article  CAS  PubMed  Google Scholar 

  31. Uygar B, Lagerlof O (2023) Brain O-GlcNAcylation: from molecular mechanisms to clinical phenotype. Adv Neurobiol 29:255–280. https://doi.org/10.1007/978-3-031-12390-0_9

    Article  PubMed  Google Scholar 

  32. Seo J, Park YS, Kweon TH, Kang J, Son S, Kim HB, Seo YR, Kang MJ et al (2020) O-linked N-Acetylglucosamine modification of mitochondrial antiviral signaling protein regulates antiviral signaling by modulating its activity. Front Immunol 11:589259. https://doi.org/10.3389/fimmu.2020.589259

    Article  CAS  PubMed  Google Scholar 

  33. Cui Y, Xie R, Zhang X, Liu Y, Hu Y, Li Y, Liu X, Yu X et al (2021) OGA is associated with deglycosylation of NONO and the KU complex during DNA damage repair. Cell Death Dis 12(7):622. https://doi.org/10.1038/s41419-021-03910-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riegger J, Baumert J, Zaucke F, Brenner RE (2021) The hexosamine biosynthetic pathway as a therapeutic target after cartilage trauma: modification of chondrocyte survival and metabolism by glucosamine derivatives and PUGNAc in an Ex Vivo Model. International journal of molecular sciences 22 (14). https://doi.org/10.3390/ijms22147247

  35. Amirian R, Azadi Badrbani M, Izadi Z, Samadian H, Bahrami G, Sarvari S, Abdolmaleki S, Nabavi SM et al (2023) Targeted protein modification as a paradigm shift in drug discovery. Eur J Med Chem 260:115765. https://doi.org/10.1016/j.ejmech.2023.115765

    Article  CAS  PubMed  Google Scholar 

  36. Hou ST (2020) The regulatory and enzymatic functions of CRMPs in neuritogenesis, synaptic plasticity, and gene transcription. Neurochem Int 139:104795. https://doi.org/10.1016/j.neuint.2020.104795

    Article  CAS  PubMed  Google Scholar 

  37. Cabrera JT, Si R, Tsuji-Hosokawa A, Cai H, Yuan JX, Dillmann WH, Makino A (2023) Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice. Diab Vasc Dis Res 20(3):14791641231173630. https://doi.org/10.1177/14791641231173630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A (2003) YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem 278(16):14046–14052. https://doi.org/10.1074/jbc.M300789200

    Article  CAS  PubMed  Google Scholar 

  39. Sugi Y, Takahashi K, Nakano K, Hosono A, Kaminogawa S (2011) Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1. Biochem Biophys Res Commun 412(4):704–709. https://doi.org/10.1016/j.bbrc.2011.08.035

    Article  CAS  PubMed  Google Scholar 

  40. Rauth M, Freund P, Orlova A, Grunert S, Tasic N, Han X, Ruan HB, Neubauer HA, et al (2019) Cell metabolism control through O-GlcNAcylation of STAT5: a full or empty fuel tank makes a big difference for cancer cell growth and survival. International journal of molecular sciences 20 (5). https://doi.org/10.3390/ijms20051028

  41. Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker MD, Poitout V (2012) Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci USA 109(7):2376–2381. https://doi.org/10.1073/pnas.1114350109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Lamarre-Vincent N, Hsieh-Wilson LC (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 125(22):6612–6613. https://doi.org/10.1021/ja028200t

    Article  CAS  PubMed  Google Scholar 

  43. Shi JJ, Liu HF, Hu T, Gao X, Zhang YB, Li WR, Wang Q, Zhang SJ, Tang D, Chen YB (2021) Danggui-Shaoyao-San improves cognitive impairment through inhibiting O-GlcNAc-modification of estrogen alpha receptor in female db/db mice. J Ethnopharmacol 281:114562. https://doi.org/10.1016/j.jep.2021.114562

    Article  CAS  PubMed  Google Scholar 

  44. Jhu JW, Yan JB, Lin ZH, Lin SC, Peng IC (2021) SREBP1-induced glutamine synthetase triggers a feedforward loop to upregulate SREBP1 through Sp1 O-GlcNAcylation and augments lipid droplet formation in cancer cells. international journal of molecular sciences 22 (18). https://doi.org/10.3390/ijms22189814

  45. Harosh-Davidovich SB, Khalaila I (2018) O-GlcNAcylation affects beta-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer. Exp Cell Res 364(1):42–49. https://doi.org/10.1016/j.yexcr.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  46. Mir S, Ashraf S, Saeed M, Rahman AU, Ul-Haq Z (2021) Protonation states at different pH, conformational changes and impact of glycosylation in synapsin Ia. Phys Chem Chem Phys 23(31):16718–16729. https://doi.org/10.1039/d1cp00531f

    Article  CAS  PubMed  Google Scholar 

  47. Saunders H, Dias WB, Slawson C (2023) Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 105330. https://doi.org/10.1016/j.jbc.2023.105330

  48. Liu H, Yu S, Zhang H, Xu J (2014) Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells. PLoS One 9(5):e98486. https://doi.org/10.1371/journal.pone.0098486

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang F, Snead CM, Catravas JD (2012) Hsp90 regulates O-linked beta-N-acetylglucosamine transferase: a novel mechanism of modulation of protein O-linked beta-N-acetylglucosamine modification in endothelial cells. Am J Physiol Cell Physiol 302(12):C1786-1796. https://doi.org/10.1152/ajpcell.00004.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Zhang J, Dong H, Kong Y, Guan Y (2023) Emerging field: O-GlcNAcylation in ferroptosis. Front Mol Biosci 10:1203269. https://doi.org/10.3389/fmolb.2023.1203269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jensen RV, Andreadou I, Hausenloy DJ, Botker HE (2019) The role of O-GlcNAcylation for protection against ischemia-reperfusion injury. Int J Mol Sci 20(2). https://doi.org/10.3390/ijms20020404

  52. Umapathi P, Mesubi OO, Banerjee PS, Abrol N, Wang Q, Luczak ED, Wu Y, Granger JM et al (2021) Excessive O-GlcNAcylation causes heart failure and sudden death. Circulation 143(17):1687–1703. https://doi.org/10.1161/CIRCULATIONAHA.120.051911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gellai R, Hodrea J, Lenart L, Hosszu A, Koszegi S, Balogh D, Ver A, Banki NF et al (2016) Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Am J Physiol Renal Physiol 311(6):F1172–F1181. https://doi.org/10.1152/ajprenal.00545.2015

    Article  CAS  PubMed  Google Scholar 

  54. Miura Y, Sato T, Sakurai Y, Sakai R, Hiraoka W, Endo T (2014) Hyper-O-GlcNAcylation inhibits the induction of heat shock protein 70 (Hsp 70) by sodium arsenite in HeLa cells. Biol Pharm Bull 37(8):1308–1314. https://doi.org/10.1248/bpb.b14-00170

    Article  CAS  PubMed  Google Scholar 

  55. Xing YQ, Li A, Yang Y, Li XX, Zhang LN, Guo HC (2018) The regulation of FOXO1 and its role in disease progression. Life Sci 193:124–131. https://doi.org/10.1016/j.lfs.2017.11.030

    Article  CAS  PubMed  Google Scholar 

  56. O’Donnell N, Zachara NE, Hart GW, Marth JD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24(4):1680–1690. https://doi.org/10.1128/MCB.24.4.1680-1690.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lanza C, Tan EP, Zhang Z, Machacek M, Brinker AE, Azuma M, Slawson C (2016) Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects. Cell Cycle 15(10):1363–1375. https://doi.org/10.1080/15384101.2016.1167297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Slawson C, Duncan FE (2015) Sweet action: The dynamics of O-GlcNAcylation during meiosis in mouse oocytes. Mol Reprod Dev 82(12):915. https://doi.org/10.1002/mrd.22577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li X, Yue X, Sepulveda H, Burt RA, Scott DA, A. CarrA. Myers SS, Rao A (2023) OGT controls mammalian cell viability by regulating the proteasome/mTOR/ mitochondrial axis. Proc Natl Acad Sci USA 120(3):e2218332120. https://doi.org/10.1073/pnas.2218332120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng CC, Ke GM, Chu PY, Ke LY (2023) Elucidating the implications of norovirus N- and O-glycosylation, O-GlcNAcylation, and phosphorylation. Viruses 15 (3). https://doi.org/10.3390/v15030798

  61. Xu S, Suttapitugsakul S, Tong M, Wu R (2023) Systematic analysis of the impact of phosphorylation and O-GlcNAcylation on protein subcellular localization. Cell Rep 42(7):112796. https://doi.org/10.1016/j.celrep.2023.112796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Shu H, Liu J, Jin X, Wang L, Qu Y, Xia M, Peng P et al (2022) EGF promotes PKM2 O-GlcNAcylation by stimulating O-GlcNAc transferase phosphorylation at Y976 and their subsequent association. J Biol Chem 298(9):102340. https://doi.org/10.1016/j.jbc.2022.102340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Robbins M (2023) Therapies for Tau-associated neurodegenerative disorders: targeting molecules, synapses, and cells. Neural Regen Res 18(12):2633–2637. https://doi.org/10.4103/1673-5374.373670

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L et al (2023) Mechanisms of ferroptosis in Alzheimer’s disease and therapeutic effects of natural plant products: a review. Biomed Pharmacother 164:114312. https://doi.org/10.1016/j.biopha.2023.114312

    Article  CAS  PubMed  Google Scholar 

  65. Mathew AT, Baidya ATK, Das B, Devi B, Kumar R (2023) N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: a microsecond long molecular dynamics study. Proteins 91(2):147–160. https://doi.org/10.1002/prot.26417

    Article  CAS  PubMed  Google Scholar 

  66. Zuliani I, Lanzillotta C, Tramutola A, Barone E, Perluigi M, Rinaldo S, Paone A, Cutruzzola F, et al (2021) High-fat diet leads to reduced protein O-GlcNAcylation and mitochondrial defects promoting the development of Alzheimer’s disease signatures. Int J Mol Sci 22 (7). https://doi.org/10.3390/ijms22073746

  67. Ednie AR, Paul-Onyia CD, Bennett ES (2023) Reduced O-GlcNAcylation diminishes cardiomyocyte Ca(2+) dependent facilitation and frequency dependent acceleration of relaxation. J Mol Cell Cardiol 180:10–21. https://doi.org/10.1016/j.yjmcc.2023.04.007

    Article  CAS  PubMed  Google Scholar 

  68. Ogawa M, Sawaguchi S, Kamemura K, Okajima T (2015) Intracellular and extracellular O-linked N-acetylglucosamine in the nervous system. Exp Neurol 274(Pt B):166–174. https://doi.org/10.1016/j.expneurol.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  69. Song M, Kim HS, Park JM, Kim SH, Kim IH, Ryu SH, Suh PG (2008) o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells. Cell Signal 20(1):94–104. https://doi.org/10.1016/j.cellsig.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  70. Park NY, Jo DS, Cho DH (2022) Post-translational modifications of ATG4B in the regulation of autophagy. Cells 11 (8). https://doi.org/10.3390/cells11081330

  71. Zhang X, Wang L, Lak B, Li J, Jokitalo E, Wang Y (2018) GRASP55 senses glucose deprivation through O-GlcNAcylation to promote autophagosome-lysosome fusion. Developmental cell 45(2):245-261e246. https://doi.org/10.1016/j.devcel.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu X, Wu J, Wang N, Xia L, Fan S, Lu Y, Chen X, Shang S et al (2020) Artesunate reverses LPS tolerance by promoting ULK1-mediated autophagy through interference with the CaMKII-IP3R-CaMKKbeta pathway. Int Immunopharmacol 87:106863. https://doi.org/10.1016/j.intimp.2020.106863

    Article  CAS  PubMed  Google Scholar 

  73. Hegdekar N, Sarkar C, Bustos S, Ritzel RM, Hanscom M, Ravishankar P, Philkana D, Wu J et al (2023) Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy 19(7):2026–2044. https://doi.org/10.1080/15548627.2023.2167689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu Y, Wan W (2023) Acetylation in the regulation of autophagy. Autophagy 19(2):379–387. https://doi.org/10.1080/15548627.2022.2062112

    Article  CAS  PubMed  Google Scholar 

  75. Chen L, Zhou Q, Zhang P, Tan W, Li Y, Xu Z, Ma J, Kupfer GM et al (2023) Direct stimulation of de novo nucleotide synthesis by O-GlcNAcylation. Nat Chem Biol. https://doi.org/10.1038/s41589-023-01354-x

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jin L, Yuan F, Dai G, Yao Q, Xiang H, Wang L, Xue B, Shan Y et al (2020) Blockage of O-linked GlcNAcylation induces AMPK-dependent autophagy in bladder cancer cells. Cell Mol Biol Lett 25:17. https://doi.org/10.1186/s11658-020-00208-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakka VP, Mohammed AQ (2020) A critical role for ISGylation, ubiquitination and SUMOylation in brain damage: implications for neuroprotection. Neurochem Res 45(9):1975–1985. https://doi.org/10.1007/s11064-020-03066-3

    Article  CAS  PubMed  Google Scholar 

  78. Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul-Leclaire M, Villot R, Uriarte M, Boulay K et al (2023) An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. iScience 26(5):106276. https://doi.org/10.1016/j.isci.2023.106276

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luanpitpong S, Rodboon N, Samart P, Vinayanuwattikun C, Klamkhlai S, Chanvorachote P, Rojanasakul Y, Issaragrisil S (2020) A novel TRPM7/O-GlcNAc axis mediates tumour cell motility and metastasis by stabilising c-Myc and caveolin-1 in lung carcinoma. Br J Cancer 123(8):1289–1301. https://doi.org/10.1038/s41416-020-0991-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miller WP, Mihailescu ML, Yang C, Barber AJ, Kimball SR, Jefferson LS, Dennis MD (2016) The translational repressor 4E-BP1 contributes to diabetes-induced visual dysfunction. Invest Ophthalmol Vis Sci 57(3):1327–1337. https://doi.org/10.1167/iovs.15-18719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu H, Wang Z, Yu S, Xu J (2014) Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory responsedagger. Cardiovasc Res 103(1):131–139. https://doi.org/10.1093/cvr/cvu116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu Y, Xu K, Yao Y, Liu Z (2023) Current research into A20 mediation of allergic respiratory diseases and its potential usefulness as a therapeutic target. Front Immunol 14:1166928. https://doi.org/10.3389/fimmu.2023.1166928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yao D, Xu L, Xu O, Li R, Chen M, Shen H, Zhu H, Zhang F et al (2018) O-linked beta-N-Acetylglucosamine modification of A20 enhances the inhibition of NF-kappaB (Nuclear factor-kappaB) activation and elicits vascular protection after acute endoluminal arterial injury. Arterioscler Thromb Vasc Biol 38(6):1309–1320. https://doi.org/10.1161/ATVBAHA.117.310468

    Article  CAS  PubMed  Google Scholar 

  84. Zhu Y, Hart GW (2023) Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on beta-catenin. Cell 186(2):428-445e427. https://doi.org/10.1016/j.cell.2022.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fang N, Li P (2021) O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis. Life Sci 274:119226. https://doi.org/10.1016/j.lfs.2021.119226

    Article  CAS  PubMed  Google Scholar 

  86. Lo PW, Shie JJ, Chen CH, Wu CY, Hsu TL, Wong CH (2018) O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2. Proc Natl Acad Sci USA 115(28):7302–7307. https://doi.org/10.1073/pnas.1801850115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu HF, Huang CW, Art J, Liu HX, Hart GW, Zeltner N (2023) O-GlcNAcylation is crucial for sympathetic neuron development, maintenance, functionality and contributes to peripheral neuropathy. Front Neurosci 17:1137847. https://doi.org/10.3389/fnins.2023.1137847

    Article  PubMed  PubMed Central  Google Scholar 

  88. Okuyama R, Marshall S (2003) UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue: temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme. J Neurochem 86(5):1271–1280. https://doi.org/10.1046/j.1471-4159.2003.01939.x

    Article  CAS  PubMed  Google Scholar 

  89. Lagerlof O, Hart GW, Huganir RL (2017) O-GlcNAc transferase regulates excitatory synapse maturity. Proc Natl Acad Sci USA 114(7):1684–1689. https://doi.org/10.1073/pnas.1621367114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zuliani I, Lanzillotta C, Tramutola A, Francioso A, Pagnotta S, Barone E, Perluigi M, Di Domenico F (2021) The dysregulation of OGT/OGA cycle mediates Tau and APP neuropathology in down syndrome. Neurotherapeutics 18(1):340–363. https://doi.org/10.1007/s13311-020-00978-4

    Article  CAS  PubMed  Google Scholar 

  91. Cheng J, Wu Y, Chen L, Li Y, Liu F, Shao J, Huang M, Fan M et al (2020) Loss of O-GlcNAc transferase in neural stem cells impairs corticogenesis. Biochem Biophys Res Commun 532(4):541–547. https://doi.org/10.1016/j.bbrc.2020.08.084

    Article  CAS  PubMed  Google Scholar 

  92. Skorobogatko Y, Landicho A, Chalkley RJ, Kossenkov AV, Gallo G, Vosseller K (2014) O-linked beta-N-acetylglucosamine (O-GlcNAc) site thr-87 regulates synapsin I localization to synapses and size of the reserve pool of synaptic vesicles. J Biol Chem 289(6):3602–3612. https://doi.org/10.1074/jbc.M113.512814

    Article  CAS  PubMed  Google Scholar 

  93. Gatie MI, Spice DM, Garha A, McTague A, Ahmer M, Timoshenko AV, Kelly GM (2022) O-GlcNAcylation and regulation of galectin-3 in extraembryonic endoderm differentiation. Biomolecules 12 (5). https://doi.org/10.3390/biom12050623

  94. Matsubara S, Matsuda T, Nakashima K (2021) Regulation of adult mammalian neural stem cells and neurogenesis by cell extrinsic and intrinsic factors. Cells 10 (5). https://doi.org/10.3390/cells10051145

  95. Li Y, Guo W (2021) Neural stem cell niche and adult neurogenesis. The Neuroscientist 27(3):235–245. https://doi.org/10.1177/1073858420939034

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  96. Zhang H, Qi J, Pei J, Zhang M, Shang Y, Li Z, Wang Y, Guo J et al (2022) O-GlcNAc modification mediates aquaporin 3 to coordinate endometrial cell glycolysis and affects embryo implantation. J Adv Res 37:119–131. https://doi.org/10.1016/j.jare.2021.06.022

    Article  CAS  PubMed  Google Scholar 

  97. Chen L, Li Y, Song Z, Xue S, Liu F, Chang X, Wu Y, Duan X et al (2022) O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci USA 119(34):e2202821119. https://doi.org/10.1073/pnas.2202821119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X et al (2023) Chemoproteomic and transcriptomic analysis reveals that O-GlcNAc regulates mouse embryonic stem cell fate through the pluripotency network. Angew Chem 62(17):e202300500. https://doi.org/10.1002/anie.202300500

    Article  CAS  Google Scholar 

  99. Andres LM, Blong IW, Evans AC, Rumachik NG, Yamaguchi T, Pham ND, Thompson P, Kohler JJ et al (2017) Chemical modulation of protein O-GlcNAcylation via OGT inhibition promotes human neural cell differentiation. ACS Chem Biol 12(8):2030–2039. https://doi.org/10.1021/acschembio.7b00232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Howerton CL, Morgan CP, Fischer DB, Bale TL (2013) O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci USA 110(13):5169–5174. https://doi.org/10.1073/pnas.1300065110

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Wheatley EG, Albarran E, White CW 3rd, Bieri G, Sanchez-Diaz C, Pratt K, Snethlage CE, Ding JB et al (2019) Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain. Curr Biol 29(20):3359-3369e3354. https://doi.org/10.1016/j.cub.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shen H, Zhao X, Chen J, Qu W, Huang X, Wang M, Shao Z, Shu Q et al (2021) O-GlcNAc transferase Ogt regulates embryonic neuronal development through modulating Wnt/beta-catenin signaling. Hum Mol Genet 31(1):57–68. https://doi.org/10.1093/hmg/ddab223

    Article  CAS  PubMed  Google Scholar 

  103. Fan J, Zhong QL, Mo R, Lu CL, Ren J, Mo JW, Guo F, Wen YL et al (2021) Proteomic profiling of astrocytic O-GlcNAc transferase-related proteins in the medial prefrontal cortex. Front Mol Neurosci 14:729975. https://doi.org/10.3389/fnmol.2021.729975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Olivier-Van Stichelen S, Wang P, Comly M, Love DC, Hanover JA (2017) Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. J Biol Chem 292(15):6076–6085. https://doi.org/10.1074/jbc.M116.774042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pravata VM, Gundogdu M, Bartual SG, Ferenbach AT, Stavridis M, Ounap K, Pajusalu S, Zordania R et al (2020) A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett 594(4):717–727. https://doi.org/10.1002/1873-3468.13640

    Article  CAS  PubMed  Google Scholar 

  106. Radecki DZ, Samanta J (2022) Endogenous neural stem cell mediated oligodendrogenesis in the adult mammalian brain. Cells 11 (13). https://doi.org/10.3390/cells11132101

  107. Bond AM, Ming GL, Song H (2021) Ontogeny of adult neural stem cells in the mammalian brain. Curr Top Dev Biol 142:67–98. https://doi.org/10.1016/bs.ctdb.2020.11.002

    Article  CAS  PubMed  Google Scholar 

  108. Rimbert S, Moreira JB, Xapelli S, Levi S (2023) Role of purines in brain development, from neuronal proliferation to synaptic refinement. Neuropharmacology 237:109640. https://doi.org/10.1016/j.neuropharm.2023.109640

    Article  CAS  PubMed  Google Scholar 

  109. Lampada A, Taylor V (2023) Notch signaling as a master regulator of adult neurogenesis. Front Neurosci 17:1179011. https://doi.org/10.3389/fnins.2023.1179011

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH (2023) Endogenous neural stem cell-induced neurogenesis after ischemic stroke: processes for brain repair and perspectives. Transl Stroke Res 14(3):297–303. https://doi.org/10.1007/s12975-022-01078-5

    Article  PubMed  Google Scholar 

  111. White CW 3rd, Fan X, Maynard JC, Wheatley EG, Bieri G, Couthouis J, Burlingame AL, Villeda SA (2020) Age-related loss of neural stem cell O-GlcNAc promotes a glial fate switch through STAT3 activation. Proc Natl Acad Sci USA 117(36):22214–22224. https://doi.org/10.1073/pnas.2007439117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tian JL, Huang CW, Eslami F, Mannino MP, Mai RL, Hart GW (2023) Regulation of primary cilium length by O-GlcNAc during neuronal development in a human neuron model. Cells 12 (11). https://doi.org/10.3390/cells12111520

  113. Kim G, Cao L, Reece EA, Zhao Z (2017) Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy. Sci Rep 7(1):11107. https://doi.org/10.1038/s41598-017-11655-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Muha V, Fenckova M, Ferenbach AT, Catinozzi M, Eidhof I, Storkebaum E, Schenck A, van Aalten DMF (2020) O-GlcNAcase contributes to cognitive function in Drosophila. J Biol Chem 295(26):8636–8646. https://doi.org/10.1074/jbc.RA119.010312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL (2009) Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci USA 106(22):8894–8899. https://doi.org/10.1073/pnas.0900288106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  116. Taylor EW, Wang K, Nelson AR, Bredemann TM, Fraser KB, Clinton SM, Puckett R, Marchase RB et al (2014) O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J Neurosci 34(1):10–21. https://doi.org/10.1523/JNEUROSCI.4761-12.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jin N, Ma D, Gu J, Shi J, Xu X, Iqbal K, Gong CX, Liu F et al (2018) O-GlcNAcylation modulates PKA-CREB signaling in a manner specific to PKA catalytic subunit isoforms. Biochem Biophys Res Commun 497(1):194–199. https://doi.org/10.1016/j.bbrc.2018.02.053

    Article  CAS  PubMed  Google Scholar 

  118. Gao Y, Liu J, Bai Z, Sink S, Zhao C, Lorenzo FR, McClain DA (2019) Iron down-regulates leptin by suppressing protein O-GlcNAc modification in adipocytes, resulting in decreased levels of O-glycosylated CREB. J Biol Chem 294(14):5487–5495. https://doi.org/10.1074/jbc.RA118.005183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stewart LT, Abiraman K, Chatham JC, McMahon LL (2020) Increased O-GlcNAcylation rapidly decreases GABA(A)R currents in hippocampus but depresses neuronal output. Sci Rep 10(1):7494. https://doi.org/10.1038/s41598-020-63188-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hwang H, Rhim H (2019) Acutely elevated O-GlcNAcylation suppresses hippocampal activity by modulating both intrinsic and synaptic excitability factors. Sci Rep 9(1):7287. https://doi.org/10.1038/s41598-019-43017-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Eshwaran R, Beck SC, Hammes HP, Wieland T, Feng Y (2023) Contribution of the hexosamine biosynthetic pathway in the hyperglycemia-dependent and -independent breakdown of the retinal neurovascular unit. Mol Metab 73:101736. https://doi.org/10.1016/j.molmet.2023.101736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R et al (2014) O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159(2):306–317. https://doi.org/10.1016/j.cell.2014.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oosterman JE, Belsham DD (2016) Glucose alters Per2 rhythmicity independent of AMPK, whereas AMPK inhibitor compound c causes profound repression of clock genes and AgRP in mHypoE-37 hypothalamic neurons. PLoS One 11(1):e0146969. https://doi.org/10.1371/journal.pone.0146969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fourneau J, Canu MH, Cieniewski-Bernard C, Bastide B, Dupont E (2018) Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay. J Neurochem 147(2):240–255. https://doi.org/10.1111/jnc.14474

    Article  CAS  PubMed  Google Scholar 

  125. Stewart LT, Khan AU, Wang K, Pizarro D, Pati S, Buckingham SC, Olsen ML, Chatham JC et al (2017) Acute increases in protein O-GlcNAcylation dampen epileptiform activity in hippocampus. J Neurosci 37(34):8207–8215. https://doi.org/10.1523/JNEUROSCI.0173-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lee BE, Kim HY, Kim HJ, Jeong H, Kim BG, Lee HE, Lee J, Kim HB et al (2020) O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain : a journal of neurology 143(12):3699–3716. https://doi.org/10.1093/brain/awaa320

    Article  PubMed  Google Scholar 

  127. Zhang J, Wei K, Qu W, Wang M, Zhu Q, Dong X, Huang X, Yi W et al (2023) Ogt deficiency induces abnormal cerebellar function and behavioral deficits of adult mice through modulating RhoA/ROCK signaling. J Neurosci 43(25):4559–4579. https://doi.org/10.1523/JNEUROSCI.1962-22.2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lagerlof O, Slocomb JE, Hong I, Aponte Y, Blackshaw S, Hart GW, Huganir RL (2016) The nutrient sensor OGT in PVN neurons regulates feeding. Science 351(6279):1293–1296. https://doi.org/10.1126/science.aad5494

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Carzoli KL, Kogias G, Fawcett-Patel J, Liu SJ (2023) Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity. Cell Rep 42(9):113057. https://doi.org/10.1016/j.celrep.2023.113057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou Z, Liu A, Xia S, Leung C, Qi J, Meng Y, Xie W, Park P et al (2018) The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nat Neurosci 21(1):50–62. https://doi.org/10.1038/s41593-017-0030-z

    Article  CAS  PubMed  Google Scholar 

  131. Xia L, Pang Y, Li J, Wu B, Du Y, Chen Y, Luo M, Wang Y et al (2021) Dihydroartemisinin induces O-GlcNAcylation and improves cognitive function in a mouse model of tauopathy. J Alzheimers Dis 84(1):239–248. https://doi.org/10.3233/JAD-210643

    Article  CAS  PubMed  Google Scholar 

  132. Jiang W, Long X, Li Z, Hu M, Zhang Y, Lin H, Tang W, Ouyang Y et al (2023) The role of circular rnas in ischemic stroke. Neurochem Res 48(9):2607–2620. https://doi.org/10.1007/s11064-023-03935-7

    Article  CAS  PubMed  Google Scholar 

  133. Zhang X, Wan M, Min X, Chu G, Luo Y, Han Z, Li W, Xu R et al (2023) Circular RNA as biomarkers for acute ischemic stroke: a systematic review and meta-analysis. CNS Neurosci Ther 29(8):2086–2100. https://doi.org/10.1111/cns.14220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gu JH, Shi J, Dai CL, Ge JB, Zhao Y, Chen Y, Yu Q, Qin ZH et al (2017) O-GlcNAcylation reduces ischemia-reperfusion-induced brain injury. Sci Rep 7(1):10686. https://doi.org/10.1038/s41598-017-10635-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. He Y, Ma X, Li D, Hao J (2017) Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-kappaB p65 signaling. J Cereb Blood Flow Metab 37(8):2938–2951. https://doi.org/10.1177/0271678X16679671

    Article  CAS  PubMed  Google Scholar 

  136. Zhu J, Ji X, Shi R, He T, Chen SY, Cong R, He B, Liu S et al (2023) Hyperglycemia aggravates the cerebral ischemia injury via protein O-GlcNAcylation. J Alzheimers Dis. https://doi.org/10.3233/JAD-230264

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB et al (2010) Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia 58(15):1881–1892. https://doi.org/10.1002/glia.21058

    Article  PubMed  Google Scholar 

  138. Zhu J, Ji X, Shi R, He T, Chen SY, Cong R, He B, Liu S et al (2023) Hyperglycemia aggravates the cerebral ischemia injury via protein O-GlcNAcylation. Journal of Alzheimer’s disease : JAD 94(2):651–668. https://doi.org/10.3233/JAD-230264

    Article  CAS  PubMed  Google Scholar 

  139. Nwafor DC, Kirby BD, Ralston JD, Colantonio MA, Ibekwe E, Lucke-Wold B (2023) Neurocognitive sequelae and rehabilitation after subarachnoid hemorrhage: optimizing outcomes. J Vasc Dis 2(2):197–211. https://doi.org/10.3390/jvd2020014

    Article  Google Scholar 

  140. Zhang C, Zhang Y, Wang Q, Fang Z, Xu X, Zhao M, Xu T (2023) Long non-coding RNAs in intracerebral hemorrhage. Front Mol Neurosci 16:1119275. https://doi.org/10.3389/fnmol.2023.1119275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cliteur MP, Sondag L, Cunningham L, Al-Shahi Salman R, Samarasekera N, Klijn CJ, Schreuder FH (2023) The association between perihaematomal oedema and functional outcome after spontaneous intracerebral haemorrhage: a systematic review and meta-analysis. Eur Stroke J 8(2):423–433. https://doi.org/10.1177/23969873231157884

    Article  PubMed  PubMed Central  Google Scholar 

  142. Li Y, Liu X, Chen S, Wang J, Pan C, Li G, Tang Z (2023) Effect of antiplatelet therapy on the incidence, prognosis, and rebleeding of intracerebral hemorrhage. CNS Neurosci Ther 29(6):1484–1496. https://doi.org/10.1111/cns.14175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. He Y, Liu H, Liu Y, Li X, Fan M, Shi K, Li M (2021) O-GlcNAcase inhibitor has protective effects in intracerebral hemorrhage by suppressing the inflammatory response. NeuroReport 32(17):1349–1356. https://doi.org/10.1097/WNR.0000000000001734

    Article  CAS  PubMed  Google Scholar 

  144. Connor TA, Clark JM, Jayamohan J, Stewart M, McGoldrick A, Williams C, Seemungal BM, Smith R et al (2019) Do equestrian helmets prevent concussion? A retrospective analysis of head injuries and helmet damage from real-world equestrian accidents. Sports Med Open 5(1):19. https://doi.org/10.1186/s40798-019-0193-0

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ishikita A, Matsushima S, Ikeda S, Okabe K, Nishimura R, Tadokoro T, Enzan N, Yamamoto T et al (2021) GFAT2 mediates cardiac hypertrophy through HBP-O-GlcNAcylation-Akt pathway. iScience 24(12):103517. https://doi.org/10.1016/j.isci.2021.103517

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, Gao Q, Zhang W, et al (2021) Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest 131 (8). https://doi.org/10.1172/JCI144703

  147. Lee TN, Alborn WE, Knierman MD, Konrad RJ (2006) Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem Biophys Res Commun 350(4):1038–1043. https://doi.org/10.1016/j.bbrc.2006.09.155

    Article  CAS  PubMed  Google Scholar 

  148. Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ (2011) Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 7(3):174–181. https://doi.org/10.1038/nchembio.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jiang J, Lazarus MB, Pasquina L, Sliz P, Walker S (2011) A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat Chem Biol 8(1):72–77. https://doi.org/10.1038/nchembio.711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu Y, Ren Y, Cao Y, Huang H, Wu Q, Li W, Wu S, Zhang J (2017) Discovery of a low toxicity O-GlcNAc transferase (OGT) inhibitor by structure-based virtual screening of natural products. Sci Rep 7(1):12334. https://doi.org/10.1038/s41598-017-12522-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Elbatrawy AA, Kim EJ, Nam G (2020) O-GlcNAcase: emerging mechanism, substrate recognition and small-molecule inhibitors. ChemMedChem 15(14):1244–1257. https://doi.org/10.1002/cmdc.202000077

    Article  CAS  PubMed  Google Scholar 

  152. Ong Q, Han W, Yang X (2018) O-GlcNAc as an integrator of signaling pathways. Front Endocrinol 9:599. https://doi.org/10.3389/fendo.2018.00599

    Article  Google Scholar 

  153. Macauley MS (1800) Vocadlo DJ (2010) Increasing O-GlcNAc levels: an overview of small-molecule inhibitors of O-GlcNAcase. Biochem Biophys Acta 2:107–121. https://doi.org/10.1016/j.bbagen.2009.07.028

    Article  CAS  Google Scholar 

  154. Pan D, Gu JH, Zhang J, Hu Y, Liu F, Iqbal K, Cekic N, Vocadlo DJ et al (2021) Thiamme2-G, a novel O-GlcNAcase inhibitor, reduces Tau hyperphosphorylation and rescues cognitive impairment in mice. J Alzheimers Dis 81(1):273–286. https://doi.org/10.3233/JAD-201450

    Article  CAS  PubMed  Google Scholar 

  155. Selnick HG, Hess JF, Tang C, Liu K, Schachter JB, Ballard JE, Marcus J, Klein DJ et al (2019) Discovery of MK-8719, a potent O-GlcNAcase inhibitor as a potential treatment for tauopathies. J Med Chem 62(22):10062–10097. https://doi.org/10.1021/acs.jmedchem.9b01090

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants from the National Natural Science Foundation of China (No. 82202392) from Mi Tian.

Author information

Authors and Affiliations

Authors

Contributions

Li Zhang was responsible for the manuscript writing including figures. Wanshan Bai was responsible for the literature collection and manuscript review. Yaonan Peng was responsible for the tables. Yixing Lin was responsible for the whole work design. Mi Tian was responsible for paper submission and funding support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mi Tian.

Ethics declarations

Additional Declarations for Articles in Life Science Journals that Report the Results of Studies Involving Humans and/or Animals

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Bai, W., Peng, Y. et al. Role of O-GlcNAcylation in Central Nervous System Development and Injuries: A Systematic Review. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04045-3

Keywords

Navigation