Skip to main content

Advertisement

Log in

Identification of Autophagy-Related Candidate Genes in the Early Diagnosis of Alzheimer’s Disease and Exploration of Potential Molecular Mechanisms

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study aimed to identify autophagy-related candidate genes for the early diagnosis of Alzheimer’s disease (AD) and elucidate their potential molecular mechanisms. Differentially expressed genes (DEGs) and phenotype-associated significant module genes were obtained using the “limma” package and weighted gene co-expression network analysis (WGCNA) based on hippocampal tissue datasets from AD patients and control samples. The intersection between the list of autophagy-related genes (ATGs), DEGs, and module genes was further investigated to obtain AD-autophagy-related differential expression genes (ATDEGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to identify hub genes, and a second intersection was performed with important module genes from the protein–protein interaction (PPI) network to obtain co-hub genes. Finally, a diagnostic model was constructed by receiver operating characteristic (ROC) analysis to determine the candidate genes with high diagnostic efficacy in the external validation set. Moreover, immune infiltration analysis was performed on AD patient brain tissues and explore the correlation between candidate genes and immune cells. We further analyzed the expression level of candidate genes in the SH-SY5Y cells with Aβ25–35 (25 µM). Among the 17 identified AD-ATDEGs, ATP6V1E1 stood out with area under the curve (AUC) values of 0.869, 0.817, and 0.714 in the external validation set, underscoring its high diagnostic efficacy in both hippocampal and peripheral blood contexts for AD patients. Meanwhile, ATP6V1E1 expression was positively correlated with effector memory CD4 + T cells, while negatively correlated with natural killer T cells and activated CD4 + T cells. Results from quantitative PCR (qPCR) and immunofluorescence assays indicated a reduction in ATP6V1E1 expression, aligning with our database analysis findings. In summary, ATP6V1E1 as a candidate gene provides a new perspective for the early identification and pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

References

  1. Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL (2017) Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Res Ther 9(1):71. https://doi.org/10.1186/s13195-017-0297-z

    Article  CAS  Google Scholar 

  2. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet (London, England) 397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

    Article  CAS  PubMed  Google Scholar 

  3. Nasrallah IM, Wolk DA (2014) Multimodality imaging of Alzheimer disease and other neurodegenerative dementias. J Nucl Med 55(12):2003–2011. https://doi.org/10.2967/jnumed.114.141416

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741

    Article  CAS  PubMed  Google Scholar 

  5. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT (2021) The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimer’s Dis 8(3):313–321. https://doi.org/10.14283/jpad.2021.15

    Article  Google Scholar 

  6. Li M, Zeng Y, Huang Z, Zhang L, Liu Y (2023) Vertical graphene-based printed electrochemical biosensor for simultaneous detection of four Alzheimer’s disease blood biomarkers. Biosensors 13(8):758. https://doi.org/10.3390/bios13080758

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang Z, Yang X, Song YQ, Tu J (2021) Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev 72:101464. https://doi.org/10.1016/j.arr.2021.101464

    Article  CAS  PubMed  Google Scholar 

  8. Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 37(3):377–388. https://doi.org/10.1007/s10571-016-0386-8

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Lee JH, Yang DS, Goulbourne CN, Im E, Stavrides P, Pensalfini A, Chan H, Bouchet-Marquis C, Bleiwas C, Berg MJ, Huo C, Peddy J, Pawlik M, Levy E, Rao M, Staufenbiel M, Nixon RA (2022) Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat Neurosci 25(6):688–701. https://doi.org/10.1038/s41593-022-01084-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tran M, Reddy PH (2021) Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front Neurosci 14:612757. https://doi.org/10.3389/fnins.2020.612757

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98. https://doi.org/10.1083/jcb.200505082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng X, Lin W, Jiang Y, Lu K, Wei W, Huo Q, Cui S, Yang X, Li M, Xu N, Tang C, Song JX (2021) Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy 17(11):3833–3847. https://doi.org/10.1080/15548627.2021.1886720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Canchi S, Raao B, Masliah D, Rosenthal SB, Sasik R, Fisch KM, De Jager PL, Bennett DA, Rissman RA (2019) Integrating gene and protein expression reveals perturbed functional networks in Alzheimer’s disease. Cell Rep 28(4):1103-1116.e4. https://doi.org/10.1016/j.celrep.2019.06.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakharenko SS, Green DR (2019) LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178(3):536-551.e14. https://doi.org/10.1016/j.cell.2019.05.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jefferies KC, Forgac M (2008) Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. J Biol Chem 283(8):4512–4519. https://doi.org/10.1074/jbc.M707144200

    Article  CAS  PubMed  Google Scholar 

  16. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Wu KM, Zhang YR, Huang YY, Dong Q, Tan L, Yu JT (2021) The role of the immune system in Alzheimer’s disease. Ageing Res Rev 70:101409. https://doi.org/10.1016/j.arr.2021.101409

    Article  CAS  PubMed  Google Scholar 

  18. McLarnon JG (2021) A leaky blood-brain barrier to fibrinogen contributes to oxidative damage in Alzheimer’s disease. Antioxidants (Basel, Switzerland) 11(1):102. https://doi.org/10.3390/antiox11010102

    Article  CAS  PubMed  Google Scholar 

  19. Butler R, Bradford D, Rodgers KE (2022) Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 14:1006089. https://doi.org/10.3389/fnagi.2022.1006089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang P, Le W (2015) Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci Bull 31(4):435–444. https://doi.org/10.1007/s12264-015-1545-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737. https://doi.org/10.1038/nri3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hughes TR, Lambert SA (2017) Transcription factors read epigenetics. Science 356(6337):489–490. https://doi.org/10.1126/science.aan2927

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172(4):650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Kontos E, Blake KD, Chou WY, Prestin A (2014) Predictors of eHealth usage: insights on the digital divide from the Health Information National Trends Survey 2012. J Med Internet Res 16(7):e172. https://doi.org/10.2196/jmir.3117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linda K, Lewerissa EI, Verboven AHA, Gabriele M, Frega M, Klein Gunnewiek TM, Devilee L, Ulferts E, Hommersom M, Oudakker A, Schoenmaker C, van Bokhoven H, Schubert D, Testa G, Koolen DA, de Vries BBA, Nadif Kasri N (2022) Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders. Autophagy 18(2):423–442. https://doi.org/10.1080/15548627.2021.1936777

    Article  CAS  PubMed  Google Scholar 

  29. Liang Y (2019) Emerging concepts and functions of autophagy as a regulator of synaptic components and plasticity. Cells 8(1):34. https://doi.org/10.3390/cells8010034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284(6):643–663. https://doi.org/10.1111/joim.12816

    Article  CAS  PubMed  Google Scholar 

  31. Qu Y, Ma YH, Huang YY, Ou YN, Shen XN, Chen SD, Dong Q, Tan L, Yu JT (2021) Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Neurosci Biobehav Rev 128:479–486. https://doi.org/10.1016/j.neubiorev.2021.07.007

    Article  CAS  PubMed  Google Scholar 

  32. Miyoshi E, Morabito S, Swarup V (2021) Systems biology approaches to unravel the molecular and genetic architecture of Alzheimer’s disease and related tauopathies. Neurobiol Dis 160:105530. https://doi.org/10.1016/j.nbd.2021.105530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adewale Q, Khan AF, Carbonell F, Iturria-Medina Y, Alzheimer’s Disease Neuroimaging Initiative, (2021) Integrated transcriptomic and neuroimaging brain model decodes biological mechanisms in aging and Alzheimer’s disease. eLife 10:e62589. https://doi.org/10.7554/eLife.62589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105(11):4441–4446. https://doi.org/10.1073/pnas.0709259105

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. Vella D, Marini S, Vitali F, Di Silvestre D, Mauri G, Bellazzi R (2018) MTGO: PPI network analysis via topological and functional module identification. Sci Rep 8(1):5499. https://doi.org/10.1038/s41598-018-23672-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Yu H, Wang F, Wu JJ, Gong J, Bi S, Mao Y, Jia D, Chai GS (2023) Integrated transcriptomics reveals the brain and blood biomarkers in Alzheimer’s disease. CNS Neurosci Ther 29(12):3943–3951. https://doi.org/10.1111/cns.14316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  38. Jiang S, Bhaskar K (2020) Degradation and transmission of tau by autophagic-endolysosomal networks and potential therapeutic targets for tauopathy. Front Mol Neurosci 13:586731. https://doi.org/10.3389/fnmol.2020.586731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC (2021) miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 76:120–131. https://doi.org/10.1016/j.semcancer.2021.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Cui Y, Liu J, Song Q, Cao M, Hou Y, Zhang X, Wang P (2022) Krüppel-like factor 5 accelerates the pathogenesis of Alzheimer’s disease via BACE1-mediated APP processing. Alzheimer’s Res Ther 14(1):103. https://doi.org/10.1186/s13195-022-01050-3

    Article  CAS  Google Scholar 

  41. Zhou Y, Ge Y, Liu Q, Li YX, Chao X, Guan JJ, Diwu YC, Zhang Q (2021) LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in Alzheimer’s disease. Neuroscience 455:52–64. https://doi.org/10.1016/j.neuroscience.2020.10.028

    Article  CAS  PubMed  Google Scholar 

  42. Silva JD, Taglialatela G, Jupiter DC (2023) Reduced prevalence of dementia in patients prescribed tacrolimus, sirolimus, or cyclosporine. J Alzheimer’s Dis 95(2):585–597. https://doi.org/10.3233/JAD-230526

    Article  CAS  Google Scholar 

  43. Maltsev AV, Nikiforova AB, Bal NV, Balaban PM (2022) Amyloid Aβ25-35 aggregates say ‘NO’ to long-term potentiation in the hippocampus through activation of stress-induced phosphatase 1 and mitochondrial Na+/Ca2+ exchanger. Int J Mol Sci 23(19):11848. https://doi.org/10.3390/ijms231911848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu C, Xu S, Liu Q, Chai H, Luo Y, Li S (2023) Identification of immune cells infiltrating in hippocampus and key genes associated with Alzheimer’s disease. BMC Med Genomics 16(1):53. https://doi.org/10.1186/s12920-023-01458-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang X, Reynolds AD, Mosley RL, Gendelman HE (2009) CD 4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 211(1–2):3–15. https://doi.org/10.1016/j.jneuroim.2009.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai Y, Lin P, Lin F, Chen M, Lin C, Lin X, Wu L, Zheng M, Chen J (2022) Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning. Front Immunol 13:1046410. https://doi.org/10.3389/fimmu.2022.1046410

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Fung ITH, Sankar P, Chen X, Robison LS, Ye L, D’Souza SS, Salinero AE, Kuentzel ML, Chittur SV, Zhang W, Zuloaga KL, Yang Q (2020) Depletion of NK cells improves cognitive function in the Alzheimer disease mouse model. J Immunol 205(2):502–510. https://doi.org/10.4049/jimmunol.2000037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all GEO data builders and data contributors. We thank the Xiangya Hospital provides SH-SY5Y cells.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design, and Jian Wang and Xinhua Huo contributed equally to this work. Material preparation, data collection, and analysis were performed by Xinhua Huo and Huiqin Zhou. The first draft of the manuscript was written by Jian Wang and Xinhua Huo. Huasheng Liu and Na Lu participated in the revision of the manuscript. Xinhua Huo, Xiaofeng Li, and Xuan Sun performed the cell culture, data correction, and image rendering. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3539 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Huo, X., Zhou, H. et al. Identification of Autophagy-Related Candidate Genes in the Early Diagnosis of Alzheimer’s Disease and Exploration of Potential Molecular Mechanisms. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04011-z

Keywords

Navigation