Skip to main content

Advertisement

Log in

Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Iron overload is associated with brain edema in the context of intracerebral hemorrhage (ICH). Here, we investigated the role of histone deacetylase 1 (HDAC1) in mediating oxidative damage induced by iron overload after ICH. Utilizing ICH mouse models and FeCl2-induced HT-22 cell models, we assessed HDAC1 expression and its impact on iron overload and oxidative damage. We examined the levels of Kruppel like factor 4 (KLF4), RAN binding protein 9 (RANBP9), as well as the acetylation levels of HDAC1 and histones H3 and H4 in the KLF4 promoter, and the KLF4 level in the RANBP9 promoter. Additionally, we investigated the binding relationships between KLF4 and the RANBP9 promoter, HDAC1 and miR-129-5p. Our results demonstrated elevated HDAC1 expression in ICH mice and FeCl2-induced HT-22 cells. HDAC1 silencing improved neurological function in mice, reduced brain edema, and alleviated iron overload and oxidative damage in vitro. HDAC1 downregulated KLF4 expression by reducing acetylation levels in the KLF4 promoter, leading to decreased KLF4 enrichment in the RANBP9 promoter and increased RANBP9 expression. Furthermore, upstream miR-129-5p inhibited HDAC1, and the downregulation of miR-129-5p mitigated the protective effect of HDAC1 silencing. Collectively, our findings highlight the significant role of HDAC1 in exacerbating iron overload-induced oxidative damage following ICH and its regulation by miR-129-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hostettler IC, Seiffge DJ, Werring DJ (2019) Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Rev Neurother 19:679–694

    Article  PubMed  CAS  Google Scholar 

  2. Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxid Med Cell Longev 2016:1203285

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yao Z, Bai Q, Wang G (2021) Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage. Oxid Med Cell Longev 2021:8815441

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiong XY, Wang J, Qian ZM, Yang QW (2014) Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res 5:429–441

    Article  PubMed  CAS  Google Scholar 

  5. Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 130:1204–1229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wan J, Ren H, Wang J (2019) Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol 4:93–95

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M (2022) Oxidative stress following intracerebral hemorrhage: from molecular mechanisms to therapeutic targets. Front Immunol 13:847246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dunaway LS, Pollock JS (2022) HDAC1: an environmental sensor regulating endothelial function. Cardiovasc Res 118:1885–1903

    Article  PubMed  CAS  Google Scholar 

  9. Luo K, Wang Z, Zhuang K, Yuan S, Liu F, Liu A (2022) Suberoylanilide hydroxamic acid suppresses axonal damage and neurological dysfunction after subarachnoid hemorrhage via the HDAC1/HSP70/TDP-43 axis. Exp Mol Med 54:1423–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Han Z, Zhao H, Tao Z, Wang R, Fan Z, Luo Y, Luo Y, Ji X (2018) TOPK promotes microglia/macrophage polarization towards M2 phenotype via inhibition of HDAC1 and HDAC2 activity after transient cerebral ischemia. Aging Dis 9:235–248

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yin X, Wu Q, Monga J, Xie E, Wang H, Wang S, Zhang H, Wang ZY et al (2018) HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models. Antioxid Redox Signal 28:1224–1237

    Article  PubMed  CAS  Google Scholar 

  12. Li D, Zhao Y, Bai P, Li Y, Wan S, Zhu X, Liu M (2021) Baihui (DU20)-penetrating-Qubin (GB7) acupuncture regulates microglia polarization through miR-34a-5p/Klf4 signaling in intracerebral hemorrhage rats. Exp Anim 70:469–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Huang Y, Chen J, Lu C, Han J, Wang G, Song C, Zhu S, Wang C et al (2014) HDAC1 and Klf4 interplay critically regulates human myeloid leukemia cell proliferation. Cell Death Dis 5:e1491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang H, Lu X, Hao Y, Tang L, He Z (2020) MicroRNA-26a-5p alleviates neuronal apoptosis and brain injury in intracerebral hemorrhage by targeting RAN binding protein 9. Acta Histochem 122:151571

    Article  PubMed  CAS  Google Scholar 

  15. Murrin LC, Talbot JN (2007) RanBPM, a scaffolding protein in the immune and nervous systems. J Neuroimmune Pharmacol 2:290–295

    Article  PubMed  Google Scholar 

  16. Zhou S, Zeng H, Huang J, Lei L, Tong X, Li S, Zhou Y, Guo H et al (2021) Epigenetic regulation of melanogenesis. Ageing Res Rev 69:101349

    Article  PubMed  CAS  Google Scholar 

  17. Ma XL, Li SY, Shang F (2017) Effect of microRNA-129-5p targeting HMGB1-RAGE signaling pathway on revascularization in a collagenase-induced intracerebral hemorrhage rat model. Biomed Pharmacother 93:238–244

    Article  PubMed  CAS  Google Scholar 

  18. National Research Council (US) (2011) Guide for the care and use of laboratory animals. 8th edition. National Academies Press (US), Washington (DC). https://doi.org/10.17226/12910

  19. Wang Y, Song Y, Pang Y, Yu Z, Hua W, Gu Y, Qi J, Wu H (2020) miR-183-5p alleviates early injury after intracerebral hemorrhage by inhibiting heme oxygenase-1 expression. Aging (Albany NY) 12:12869–12895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xi Z, Hu X, Chen X, Yang Y, Ren J, Wang B, Zhong Z, Sun Y et al (2019) Protocatechuic acid exerts protective effects via suppression of the P38/JNK- NF-kappaB signalling pathway in an experimental mouse model of intracerebral haemorrhage. Eur J Pharmacol 854:128–138

    Article  PubMed  CAS  Google Scholar 

  21. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92-97

    Article  PubMed  CAS  Google Scholar 

  22. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    Article  PubMed  PubMed Central  Google Scholar 

  23. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, Lucas J, Boddie P et al (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50:D165–D173

    Article  PubMed  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  25. Qing WG, Dong YQ, Ping TQ, Lai LG, Fang LD, Min HW, Xia L, Heng PY (2009) Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg 110:462–468

    Article  PubMed  Google Scholar 

  26. Bakhshayesh B, Hosseininezhad M, Saadat SN, Ansar MM, Ramezani H, Saadat SM (2014) Iron overload is associated with perihematoma edema growth following intracerebral hemorrhage that may contribute to in-hospital mortality and long-term functional outcome. Curr Neurovasc Res 11:248–253

    Article  PubMed  CAS  Google Scholar 

  27. Zhou J, Zhou H, Liu C, Huang L, Lu D, Gao C (2020) HDAC1-mediated deacetylation of LSD1 regulates vascular calcification by promoting autophagy in chronic renal failure. J Cell Mol Med 24:8636–8649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li S, Huang L, Gu J, Wu J, Ou W, Feng J, Liu B, Xu X et al (2017) Restoration of KLF4 inhibits invasion and metastases of lung adenocarcinoma through suppressing MMP2. J Cancer 8:3480–3489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Shao Z, Tu S, Shao A (2019) Pathophysiological mechanisms and potential therapeutic targets in intracerebral hemorrhage. Front Pharmacol 10:1079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zheng Y, Li R, Fan X (2022) Targeting oxidative stress in intracerebral hemorrhage: prospects of the natural products approach. Antioxidants (Basel) 11:1811

    Article  PubMed  CAS  Google Scholar 

  31. Kee HJ, Kim I, Jeong MH (2022) Zinc-dependent histone deacetylases: potential therapeutic targets for arterial hypertension. Biochem Pharmacol 202:115111

    Article  PubMed  CAS  Google Scholar 

  32. Chen JS, Wang HK, Hsu CY, Su YT, Chen JS, Liang CL, Hsieh PC, Wu CC et al (2021) HDAC1 deregulation promotes neuronal loss and deficit of motor function in stroke pathogenesis. Sci Rep 11:16354

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen JS, Wang HK, Su YT, Hsu CY, Chen JS, Liang CL, Wu CC, Kwan AL (2021) Restoration of HDAC1 enzymatic activity after stroke protects neurons from ischemia/reperfusion damage and attenuates behavioral deficits in rats. Int J Mol Sci 22:10654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, Cheng T, Wang Y et al (2018) HDAC1 silence promotes neuroprotective effects of human umbilical cord-derived mesenchymal stem cells in a mouse model of traumatic brain injury via PI3K/AKT pathway. Front Cell Neurosci 12:498

    Article  PubMed  CAS  Google Scholar 

  35. Wang G, Shao A, Hu W, Xue F, Zhao H, Jin X, Li G, Sun Z et al (2015) Changes of ferrous iron and its transporters after intracerebral hemorrhage in rats. Int J Clin Exp Pathol 8:10671–10679

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Helbok R, Rass V, Kofler M, Talasz H, Schiefecker A, Gaasch M, Scherfler C, Pfausler B et al (2022) Intracerebral iron accumulation may be associated with secondary brain injury in patients with poor grade subarachnoid hemorrhage. Neurocrit Care 36:171–179

    Article  PubMed  CAS  Google Scholar 

  37. Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC (2023) The role of potential oxidative biomarkers in the prognosis of acute ischemic stroke and the exploration of antioxidants as possible preventive and treatment options. Int J Mol Sci 24:6389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    Article  PubMed  CAS  Google Scholar 

  39. Chen Y, Lu Y, Xu S, Liu M, Chen W, Zhang Y, Wei L, Zhong C (2022) HDAC1 expression is positively correlated with NADPH oxidase 4-mediated oxidative stress in a mouse model of traumatic brain injury. J Neurophysiol 127:1438–1444

    Article  PubMed  CAS  Google Scholar 

  40. Sevastre-Berghian AC, Ielciu I, Mitre AO, Filip GA, Oniga I, Vlase L, Benedec D, Gheldiu AM et al (2020) Targeting oxidative stress reduction and inhibition of HDAC1, MECP2, and NF-kB pathways in rats with experimentally induced hyperglycemia by administration of Thymus marschallianus Willd. Extracts Front Pharmacol 11:581470

    Article  PubMed  CAS  Google Scholar 

  41. Qin J, Song B, Zhang H, Wang Y, Wang N, Ji Y, Qi J, Chandra A et al (2013) Transplantation of human neuro-epithelial-like stem cells derived from induced pluripotent stem cells improves neurological function in rats with experimental intracerebral hemorrhage. Neurosci Lett 548:95–100

    Article  PubMed  CAS  Google Scholar 

  42. Han Y, Nie J, Wang DW, Ni L (2022) Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 9:931475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu C, La Rosa S, Hagos EG (2015) Oxidative DNA damage causes premature senescence in mouse embryonic fibroblasts deficient for Kruppel-like factor 4. Mol Carcinog 54:889–899

    Article  PubMed  CAS  Google Scholar 

  44. Huang T, Yin J, Ren S, Zhang X (2023) Protective effects of KLF4 on blood-brain barrier and oxidative stress after cerebral ischemia-reperfusion in rats through the Nrf2/Trx1 pathway. Cytokine 169:156288

    Article  PubMed  CAS  Google Scholar 

  45. Zamanian MY, Golmohammadi M, Amin RS, Bustani GS, Romero-Parra RM, Zabibah RS, Oz T, Jalil AT et al (2023) Therapeutic targeting of Kruppel-like factor 4 and its pharmacological potential in Parkinson’s disease: a comprehensive review. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03800-2

    Article  PubMed  Google Scholar 

  46. Peters DG, Connor JR, Meadowcroft MD (2015) The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: Two sides of the same coin. Neurobiol Dis 81:49–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li H, Zhang C, Shen H, Shen Z, Wu L, Mo F, Li M (2017) Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 7:5745

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Cui J, Shi M, Quan M, Xie K (2013) Regulation of EMT by KLF4 in gastrointestinal cancer. Curr Cancer Drug Targets 13:986–995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Roh SE, Woo JA, Lakshmana MK, Uhlar C, Ankala V, Boggess T, Liu T, Hong YH et al (2013) Mitochondrial dysfunction and calcium deregulation by the RanBP9-cofilin pathway. FASEB J 27:4776–4789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Han J, Yang S, Hao X, Zhang B, Zhang H, Xin C, Hao Y (2020) Extracellular vesicle-derived microRNA-410 from mesenchymal stem cells protects against neonatal hypoxia-ischemia brain damage through an HDAC1-dependent EGR2/Bcl2 axis. Front Cell Dev Biol 8:579236

    Article  PubMed  Google Scholar 

  51. Lei Y, Jin X, Sun M, Ji Z (2021) miR-129-5p ameliorates ischemic brain injury by binding to SIAH1 and activating the mTOR signaling pathway. J Mol Neurosci 71:1761–1771

    Article  PubMed  CAS  Google Scholar 

  52. Yan F, Cui W, Chen Z (2022) Mesenchymal stem cell-derived exosome-loaded microRNA-129-5p inhibits TRAF3 expression to alleviate apoptosis and oxidative stress in heart failure. Cardiovasc Toxicol 22:631–645

    Article  PubMed  CAS  Google Scholar 

  53. Rahmati M, Keshvari M, Koyanagi A, Yon DK, Lee SW, Shin JI, Smith L (2023) The effectiveness of community ageing in place, advancing better living for elders as a biobehavioural environmental approach for disability among low-income older adults: a systematic review and meta-analysis. Age Ageing 52:afad053

    Article  PubMed  Google Scholar 

  54. Rahmati M, Molanouri Shamsi M, Woo W, Koyanagi A, Won Lee S, Keon Yon D, Shin JI, Smith L (2023) Effects of physical rehabilitation interventions in COVID-19 patients following discharge from hospital: a systematic review. J Integr Med 21:149–158

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rahmati M, Gondin J, Malakoutinia F (2021) Effects of neuromuscular electrical stimulation on quadriceps muscle strength and mass in healthy young and older adults: a scoping review. Phys Ther 101:pzab144

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cheng.

Ethics declarations

Ethical Approval

All animal experimental protocols were approved by the Animal Ethics Committee of Tianjin Medical University General Hospital. The use, care, and procedures involving all animals adhered to the Guidelines for the Care and Use of Experimental Animals [18].

Consent for Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhang, J., Yao, X. et al. Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04000-2

Keywords

Navigation