Skip to main content

Advertisement

Log in

Natural Flavonoid Apigenin, an Effective Agent Against Nervous System Cancers

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cancer is a serious public health concern worldwide, and nervous system (NS) cancers are among the most life-threatening malignancies. Efforts have been devoted to introduce natural anticancer agents with minimal side effects. Apigenin is an edible flavonoid that is abundantly found in many vegetables and fruits. Various pharmaceutical activities, including anti-inflammatory, antioxidative, antimicrobial, and anticancer effects have been reported for apigenin. This review provides insights into the therapeutic effects of apigenin and flavonoids with similar structure on glioblastoma and neuroblastoma. Current evidence indicates that apigenin has the unique ability to cross the blood-brain barrier, and its antioxidative, anti-inflammatory, neurogenic, and neuroprotective effects have made this flavonoid a great option for the treatment of neurodegenerative disorders. Meanwhile, apigenin has low toxicity on normal neuronal cells, while induces cytotoxicity on NS cancer cells via triggering several signal pathways and molecular targets. Anticancer effects of apigenin have been contributed to various mechanisms such as induction of cell cycle arrest and apoptosis, and inhibition of migration, invasion, and angiogenesis. Although apigenin is a promising pharmaceutical agent, its low bioavailability is an important issue that must be solved before introducing to clinic. Recently, nano-delivery of apigenin by liposomes and poly lactic-co-glycolide nanoparticles has greatly improved functionality of this agent. Hence, investigating pharmaceutical effects of apigenin-loaded nanocarriers on NS cancer cell lines and animal models is recommended for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AKT:

Ak strain transforming

AMPK:

AMP-activated protein kinase

BDNF:

Brain-derived neurotrophic factor

CDK-1:

Cyclin-dependent kinase 1

c-FLIP:

Cellular FADD-like IL-1β-converting enzyme-inhibitory protein

c-Met:

Mesenchymal-epithelial transition factor

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

GDNF:

Glial-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GLUT:

Glucose transporters

GPx:

Glutathione peroxidase

hTERT:

Human telomerase reverse transcriptase

HIF-1α:

Hypoxia-inducible factor-1 α

IL:

Interleukin

JAK:

Janus kinase

KLF4:

Krüpple-like factor 4

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCL1:

Myeloid cell leukemia 1

MMPs:

Matrix metalloproteinases

mTOR:

Mammalian target of rapamycin

NK:

Natural killer

NF-κB:

Nuclear factor kappa B

Nrf2:

Nuclear factor erythroid 2–related factor 2

NS:

Nervous system

PARP:

Poly ADP-ribose polymerase

PCNA:

Proliferating cell nuclear antigen

PI3K:

Phosphatidylinositol-3 kinase

PKM2:

Pyruvate kinase isozyme type M2

PLGA:

Poly lactic-co-glycolide

ROS:

Reactive oxygen species

STAT:

Signal transducers and activators of transcription

TGFβ:

Transforming growth factor-beta

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

Wnt:

Wingless-related integration site

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Sung H et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Salari N et al (2023) The global prevalence of primary central nervous system tumors: a systematic review and meta-analysis. Eur J Med Res 28(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764 discussion 264-6

    Article  PubMed  Google Scholar 

  4. Sharifi-Rad J et al (2021) Natural Coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Med Cell Longev 2021:6492346

    Article  Google Scholar 

  5. Ullah A et al (2020) Important flavonoids and their role as a therapeutic agent. Molecules 25(22):5243

  6. Moussavi M et al (2017) Synergy between Auraptene, ionizing radiation, and anticancer drugs in colon adenocarcinoma cells. Phytother Res 31(9):1369–1375

    Article  CAS  PubMed  Google Scholar 

  7. Bagheri R et al (2022) Radiation response of human leukemia/lymphoma cells was improved by 7-Geranyloxycoumarin. Dose-Response 20(3):15593258221124479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahdifar M et al (2023) Galbanic acid improves accumulation and toxicity of arsenic trioxide in MT-2 cells. Anti Cancer Agents Med Chem 23(6):699–708

    Article  CAS  Google Scholar 

  9. Salari H et al (2020) Coadministration of auraptene and radiotherapy; a novel modality against colon carcinoma cells in vitro and in vivo. Int J Radiat Biol 96(8):1051–1059

    Article  CAS  PubMed  Google Scholar 

  10. Abolhassani Y et al (2023) 7-Geranyloxcycoumarin enhances radio sensitivity in human prostate cancer cells. Mol Biol Rep 50(7):5709–5717

  11. Saboor-Maleki S et al (2017) Auraptene attenuates malignant properties of esophageal stem-like cancer cells. Technol Cancer Res Treat 16(4):519–527

    Article  CAS  PubMed  Google Scholar 

  12. Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ (2019) Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants (Basel) 8(5):137

  13. Abotaleb M et al (2018) Flavonoids in cancer and apoptosis. Cancers (Basel) 11:1

    Article  Google Scholar 

  14. Kopustinskiene DM et al (2020) Flavonoids as anticancer agents. Nutrients 12:2

    Article  Google Scholar 

  15. Cannataro R et al (2021) Polyphenols in the Mediterranean diet: from dietary sources to microRNA modulation. Antioxidants 10:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim HP et al (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96(3):229–245

    Article  CAS  PubMed  Google Scholar 

  17. Salah AM et al (2001) Angiotensin-Conventing Enzyme-Inhibitory Effect by Ruellia praetermissa. Pharm Biol 39(1):16–19

    Article  Google Scholar 

  18. Liang YC et al (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20(10):1945–1952

    Article  CAS  PubMed  Google Scholar 

  19. Lotito SB, Frei B (2006) Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J Biol Chem 281(48):37102–37110

    Article  CAS  PubMed  Google Scholar 

  20. Mao XY et al (2015) Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway. Int J Clin Exp Med 8(9):15506–15513

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nayaka HB et al (2014) Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int J Bacteriol 2014:175851

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hirano T et al (2004) Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int Arch Allergy Immunol 134(2):135–140

    Article  CAS  PubMed  Google Scholar 

  23. Myo A et al (2021) Effects of apigenin, Luteolin, and Quercetin on the natural killer (NK-92) cells proliferation: a potential role as immunomodulator. Sains Malays 50(3):821–828

    Article  Google Scholar 

  24. Oo AM et al (2021) Immunomodulatory effects of flavonoids: an experimental study on natural-killer-cell-mediated cytotoxicity against lung cancer and cytotoxic granule secretion profile. Proc Singapore Healthc 30(4):279–285

    Article  Google Scholar 

  25. Hougee S et al (2005) Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem Pharmacol 69(2):241–248

    Article  CAS  PubMed  Google Scholar 

  26. Che DN et al (2020) Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways. Inflammation 43:1716–1728

    Article  CAS  PubMed  Google Scholar 

  27. Coelho PL et al (2019) Apigenin from Croton betulaster Müll restores the immune profile of microglia against glioma cells. Phytother Res 33(12):3191–3202

    Article  CAS  PubMed  Google Scholar 

  28. Coelho PL et al (2016) The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells. Anti-Cancer Drugs 27(10):960–969

    Article  CAS  PubMed  Google Scholar 

  29. Zhao M et al (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer 10:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao G et al (2017) Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep 37(4):2277–2285

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H et al (2016) Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures. Scanning 38(4):322–328

    Article  CAS  PubMed  Google Scholar 

  32. Zhu Y et al (2013) Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell Int 13(1):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuo CH et al (2014) Apigenin has anti-atrophic gastritis and anti-gastric cancer progression effects in Helicobacter pylori-infected Mongolian gerbils. J Ethnopharmacol 151(3):1031–1039

    Article  CAS  PubMed  Google Scholar 

  34. Ujiki MB et al (2006) Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol Cancer 5:76

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ittiudomrak T et al (2019) α-Mangostin and apigenin induced cell cycle arrest and programmed cell death in SKOV-3 ovarian cancer cells. Toxicol Res 35(2):167–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng PW, Chiang LC, Lin CC (2005) Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci 76(12):1367–1379

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L et al (2015) Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct 6(11):3464–3472

    Article  CAS  PubMed  Google Scholar 

  38. Chen M et al (2016) Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep 6:35468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tseng TH et al (2017) Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression. Environ Toxicol 32(2):434–444

    Article  CAS  PubMed  Google Scholar 

  40. Shao H et al (2013) Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther 12(12):2640–2650

    Article  CAS  PubMed  Google Scholar 

  41. Shukla S, Fu P, Gupta S (2014) Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis 19(5):883–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ketkaew Y et al (2017) Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol 74:69–74

  43. Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35(10):1517–1525

    Article  CAS  PubMed  Google Scholar 

  44. Shukla S et al (2015) Suppression of NF-κB and NF-κB-regulated gene expression by apigenin through IκBα and IKK pathway in TRAMP Mice. PLoS One 10(9):e0138710

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seo HS et al (2015) Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep 35(6):e00276

  46. Gupta S, Afaq F, Mukhtar H (2002) Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21(23):3727–3738

    Article  CAS  PubMed  Google Scholar 

  47. Solmaz S et al (2014) Therapeutic potential of apigenin, a plant flavonoid, for imatinib-sensitive and resistant chronic myeloid leukemia cells. Nutr Cancer 66(4):599–612

    Article  CAS  PubMed  Google Scholar 

  48. Ruela-de-Sousa RR et al (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis 1(1):e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu X et al (2015) Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol Rep 34(2):1035–1041

    Article  CAS  PubMed  Google Scholar 

  50. Lim W et al (2016) Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways. J Cell Physiol 231(12):2690–2699

    Article  CAS  PubMed  Google Scholar 

  51. Rahmani AH et al (2022) The potential role of apigenin in cancer prevention and treatment. Molecules 27(18):6051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salehi B et al (2019) The therapeutic potential of apigenin. Int J Mol Sci 20(6):1305

  53. Manach C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    Article  CAS  PubMed  Google Scholar 

  54. Ali F et al (2017) Health functionality of apigenin: a review. Int J Food Prop 20(6):1197–1238

    Article  CAS  Google Scholar 

  55. Popović M et al (2014) The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J Psychopharmacol 28(5):498–501

    Article  PubMed  Google Scholar 

  56. Han JY et al (2012) Protection of apigenin against kainate-induced excitotoxicity by anti-oxidative effects. Biol Pharm Bull 35(9):1440–1446

    Article  CAS  PubMed  Google Scholar 

  57. Lee JA et al (2015) Resveratrol as a bioenhancer to improve anti-inflammatory activities of Apigenin. Nutrients 7(11):9650–9661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Souza CS et al (2015) Commitment of human pluripotent stem cells to a neural lineage is induced by the pro-estrogenic flavonoid apigenin. Adv Regene Biol 2(1):29244

    Article  Google Scholar 

  59. Balez R et al (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 6(1):1–16

    Article  Google Scholar 

  60. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22(5):749–760

    Article  CAS  PubMed  Google Scholar 

  61. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Article  Google Scholar 

  62. Nabavi SF et al (2018) Apigenin as neuroprotective agent: of mice and men. Pharmacol Res 128:359–365

    Article  PubMed  Google Scholar 

  63. do Nascimento RP et al (2022) Neuroimmunomodulatory properties of flavonoids and derivates: A potential action as adjuvants for the treatment of glioblastoma. Pharmaceutics 14(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  64. Torkin R et al (2005) Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther 4(1):1–11

    Article  CAS  PubMed  Google Scholar 

  65. Das A, Banik NL, Ray SK (2006) Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer 119(11):2575–2585

    Article  CAS  PubMed  Google Scholar 

  66. Stump TA et al (2017) The antiproliferative and apoptotic effects of apigenin on glioblastoma cells. J Pharm Pharmacol 69(7):907–916

    Article  CAS  PubMed  Google Scholar 

  67. Coelho PLC et al (2016) The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells. Anti-Cancer Drugs 27(10):960–969

  68. Shendge AK, Chaudhuri D, Mandal N (2021) The natural flavones, acacetin and apigenin, induce Cdk-Cyclin mediated G2/M phase arrest and trigger ROS-mediated apoptosis in glioblastoma cells. Mol Biol Rep 48(1):539–549

    Article  CAS  PubMed  Google Scholar 

  69. Kim B et al (2016) Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-Met signaling. Phytother Res 30(11):1833–1840

    Article  CAS  PubMed  Google Scholar 

  70. Das A, Banik NL, Ray SK (2010) Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 116(1):164–176

    Article  CAS  PubMed  Google Scholar 

  71. Dixit D et al (2012) Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3(2):e271–e271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Santos BL et al (2015) Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem Biol Interact 242:123–138

    Article  CAS  PubMed  Google Scholar 

  73. Mohan N, Banik NL, Ray SK (2011) Combination of N-(4-hydroxyphenyl) retinamide and apigenin suppressed starvation-induced autophagy and promoted apoptosis in malignant neuroblastoma cells. Neurosci Lett 502(1):24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chakrabarti M, Banik NL, Ray SK (2013) Sequential hTERT knockdown and apigenin treatment inhibited invasion and proliferation and induced apoptosis in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cells. J Mol Neurosci 51(1):187–198

    Article  CAS  PubMed  Google Scholar 

  75. Hossain MM, Banik NL, Ray SK (2013) N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification. Gene 529(1):27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mohan N et al (2013) KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells. Mol Oncol 7(3):464–474

    Article  CAS  PubMed  Google Scholar 

  77. Karmakar S et al (2009) Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways. Biochem Biophys Res Commun 388(4):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Freitas S et al (2011) Flavonoids inhibit angiogenic cytokine production by human glioma cells. Phytother Res 25(6):916–921

    Article  CAS  PubMed  Google Scholar 

  79. Zhao Y et al (2021) Apigenin increases radiosensitivity of glioma stem cells by attenuating HIF-1α-mediated glycolysis. Med Oncol 38(11):131

    Article  CAS  PubMed  Google Scholar 

  80. Kim A et al (2016) Apigenin reduces proteasome inhibition-induced neuronal apoptosis by suppressing the cell death process. Neurochem Res 41:2969–2980

    Article  CAS  PubMed  Google Scholar 

  81. Jia C et al (2022) Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 107:109038

    Article  CAS  PubMed  Google Scholar 

  82. Wang D et al (2021) Apigenin and temozolomide synergistically inhibit glioma growth through the PI3K/AKT pathway. Cancer Biother Radiopharm

  83. Yen T-H et al (2018) Amentoflavone induces apoptosis and inhibits NF-ĸB-modulated anti-apoptotic signaling in glioblastoma cells. In Vivo 32(2):279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsu FT et al (2019) Amentoflavone Effectively Blocked the Tumor Progression of Glioblastoma via Suppression of ERK/NF- κ B Signaling Pathway. Am J Chin Med 47(4):913–931

    Article  CAS  PubMed  Google Scholar 

  85. Zhaohui W et al (2018) Amentoflavone induces apoptosis and suppresses glycolysis in glioma cells by targeting miR-124-3p. Neurosci Lett 686:1–9

    Article  PubMed  Google Scholar 

  86. Chen Y et al (2020) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci 247:117425

    Article  CAS  PubMed  Google Scholar 

  87. Zhang G et al (2018) Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol Med Rep 17(3):4599–4604

    CAS  PubMed  Google Scholar 

  88. Huang J et al (2022) Effects of Vitexin, a Natural Flavonoid Glycoside, on the Proliferation, Invasion, and Apoptosis of Human U251 Glioblastoma Cells. Oxidative Med Cell Longev 2022:3129155

    Google Scholar 

  89. Xie T et al (2020) Vitexin, an inhibitor of hypoxia-inducible factor-1α, enhances the radiotherapy sensitization of hyperbaric oxygen on glioma. Clin Transl Oncol 22:1086–1093

    Article  CAS  PubMed  Google Scholar 

  90. Amini R, Yazdanparast R, Ghaffari S (2015) Apigenin modulates the expression levels of pro-inflammatory mediators to reduce the human insulin amyloid-induced oxidant damages in SK-N-MC cells. Hum Exp Toxicol 34(6):642–653

    Article  CAS  PubMed  Google Scholar 

  91. Cai J et al (2019) Amentoflavone ameliorates cold stress-induced inflammation in lung by suppression of C3/BCR/NF-κB pathways. BMC Immunol 20:1–10

    Article  Google Scholar 

  92. Li YL et al (2020) Protective antioxidant effects of amentoflavone and total flavonoids from Hedyotis diffusa on H2O2-induced HL-O2 Cells through ASK1/p38 MAPK pathway. Chem Biodivers 17(7):e2000251

    Article  CAS  PubMed  Google Scholar 

  93. Hwang JH et al (2013) Antibacterial effect of amentoflavone and its synergistic effect with antibiotics. J Microbiol Biotechnol 23(7):953–958

    Article  CAS  PubMed  Google Scholar 

  94. Wilsky S et al (2012) Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch Virol 157:259–269

    Article  CAS  PubMed  Google Scholar 

  95. Su C et al (2019) Antidiabetic activity and potential mechanism of amentoflavone in diabetic mice. Molecules 24(11):2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ishola IO et al (2012) Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol Biochem Behav 103(2):322–331

    Article  CAS  PubMed  Google Scholar 

  97. Cao Q et al (2017) Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol 319:80–90

    Article  PubMed  Google Scholar 

  98. Zhao N et al (2019) Amentoflavone suppresses amyloid β1–42 neurotoxicity in Alzheimer's disease through the inhibition of pyroptosis. Life Sci 239:117043

    Article  CAS  PubMed  Google Scholar 

  99. Rong S et al (2019) Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front Pharmacol 10:856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Z et al (2015) Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen Res 10(7):1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sasaki H et al (2015) Inhibitory activities of biflavonoids against amyloid-β peptide 42 cytotoxicity in PC-12 cells. Bioorg Med Chem Lett 25(14):2831–2833

    Article  CAS  PubMed  Google Scholar 

  102. Chen C et al (2018) Amentoflavone ameliorates Aβ 1–42-induced memory deficits and oxidative stress in cellular and rat model. Neurochem Res 43:857–868

    Article  PubMed  Google Scholar 

  103. Siveen K, Kuttan G (2011) Effect of amentoflavone, a phenolic component from Biophytum sensitivum, on cell cycling and apoptosis of B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol 30(4)

  104. Pan P-J, Tsai J-J, Liu Y-C (2017) Amentoflavone inhibits metastatic potential through suppression of ERK/NF-κB activation in osteosarcoma U2OS cells. Anticancer Res 37(9):4911–4918

    CAS  PubMed  Google Scholar 

  105. Lee Y-J et al (2019) Suppression of ERK/NF-κB activation is associated with amentoflavone-inhibited osteosarcoma progression in vivo. Anticancer Res 39(7):3669–3675

    Article  CAS  PubMed  Google Scholar 

  106. Chen W-T et al (2021) Amentoflavone induces cell-cycle arrest, apoptosis, and invasion inhibition in non-small cell lung cancer cells. Anticancer Res 41(3):1357–1364

    Article  CAS  PubMed  Google Scholar 

  107. Shen F et al (2019) Retracted: amentoflavone promotes apoptosis in non-small-cell lung cancer by modulating cancerous inhibitor of PP2A. Anat Rec 302(12):2201–2210

    Article  CAS  Google Scholar 

  108. Lee S et al (2011) The biflavonoid amentoflavone induces apoptosis via suppressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J Med Food 14(7-8):808–816

    Article  CAS  PubMed  Google Scholar 

  109. Zhang J et al (2020) Amentoflavone triggers cell cycle G2/M arrest by interfering with microtubule dynamics and inducing DNA damage in SKOV3 cells. Oncol Lett 20(5):1–1

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chiang C-H et al (2019) Amentoflavone induces apoptosis and reduces expression of anti-apoptotic and metastasis-associated proteins in bladder cancer. Anticancer Res 39(7):3641–3649

    Article  CAS  PubMed  Google Scholar 

  111. Aliyev A et al (2021) In vitro evaluation of estrogenic, antiestrogenic and antitumor effects of amentoflavone. Hum Exp Toxicol 40(9):1510–1518

    Article  CAS  PubMed  Google Scholar 

  112. Pei J-S et al (2012) Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo 26(6):963–970

    CAS  PubMed  Google Scholar 

  113. Tsai J-J et al (2018) Amentoflavone enhances the therapeutic efficacy of sorafenib by inhibiting anti-apoptotic potential and potentiating apoptosis in hepatocellular carcinoma in vivo. Anticancer Res 38(4):2119–2125

    CAS  PubMed  Google Scholar 

  114. He M et al (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85

    Article  CAS  PubMed  Google Scholar 

  115. Yang SH et al (2013) The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother Res 27(8):1154–1161

    Article  CAS  PubMed  Google Scholar 

  116. Min J-W et al (2015) Vitexin reduces hypoxia–ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 99:38–50

    Article  CAS  PubMed  Google Scholar 

  117. Guimarães CC et al (2015) The glycosylated flavonoids vitexin, isovitexin, and quercetrin isolated from Serjania erecta Radlk (Sapindaceae) leaves protect PC12 cells against amyloid-β25-35 peptide-induced toxicity. Food Chem Toxicol 86:88–94

    Article  PubMed  Google Scholar 

  118. Liu X et al (2019) Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol Res 52:1–7

    Article  Google Scholar 

  119. An F et al (2015) Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Oncol Lett 10(4):2627–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xin H et al (2013) Lignans extracted from Vitex negundo possess cytotoxic activity by G2/M phase cell cycle arrest and apoptosis induction. Phytomedicine 20(7):640–647

    Article  CAS  PubMed  Google Scholar 

  121. Tan Z et al (2012) Purified vitexin compound 1 suppresses tumor growth and induces cell apoptosis in a mouse model of human choriocarcinoma. Int J Gynecol Cancer 22(3)

  122. Lin C-M et al (2005) Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Med 71(08):748–753

    Article  CAS  PubMed  Google Scholar 

  123. da Silva IC et al (2018) Apoptosis caused by triterpenes and phytosterols and antioxidant activity of an enriched flavonoid extract from Passiflora mucronata. Anti-Cancer Agents Med Chem 18(10):1405–1416

  124. Lv S-X, Qiao X (2018) Isovitexin (IV) induces apoptosis and autophagy in liver cancer cells through endoplasmic reticulum stress. Biochem Biophys Res Commun 496(4):1047–1054

    Article  CAS  PubMed  Google Scholar 

  125. Hanafi MM et al (2017) In vitro pro-apoptotic and anti-migratory effects of Ficus deltoidea L. plant extracts on the human prostate cancer cell lines PC3. Front Pharmacol 8:895

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cao X et al (2019) Isovitexin reduces carcinogenicity and stemness in hepatic carcinoma stem-like cells by modulating MnSOD and FoxM1. J Exp Clin Cancer Res 38:1–18

    Article  Google Scholar 

  127. Li B, Robinson DH, Birt DF (1997) Evaluation of properties of apigenin and [G-3H] apigenin and analytic method development. J Pharm Sci 86(6):721–725

    Article  CAS  PubMed  Google Scholar 

  128. Zhang J et al (2012) Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm 436(1-2):311–317

    Article  CAS  PubMed  Google Scholar 

  129. Biesaga M (2011) Influence of extraction methods on stability of flavonoids. J Chromatogr A 1218(18):2505–2512

    Article  CAS  PubMed  Google Scholar 

  130. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  131. Das S et al (2013) Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol Lett 223(2):124–138

    Article  CAS  PubMed  Google Scholar 

  132. Ganguly S et al (2021) Apigenin-loaded galactose tailored PLGA nanoparticles: a possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf B: Biointerfaces 204:111778

    Article  CAS  PubMed  Google Scholar 

  133. Mabrouk Zayed MM et al (2022) The effect of encapsulated apigenin nanoparticles on HePG-2 cells through regulation of P53. Pharmaceutics 14(6):1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mahmoudi S et al (2019) Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells. J Drug Deliv Sci Technol 49:268–276

    Article  CAS  Google Scholar 

  135. Sen K, Banerjee S, Mandal M (2019) Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B: Biointerfaces 180:9–22

    Article  CAS  PubMed  Google Scholar 

  136. Jangdey MS, Kaur CD, Saraf S (2019) Efficacy of Concanavalin-A conjugated nanotransfersomal gel of apigenin for enhanced targeted delivery of UV induced skin malignant melanoma. Artif Cells Nanomed Biotechnol 47(1):904–916

    Article  CAS  PubMed  Google Scholar 

  137. Cochran DB et al (2016) Degradable poly (apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells. J Biomed Mater Res B Appl Biomater 104(7):1438–1447

    Article  CAS  PubMed  Google Scholar 

  138. Rajendran I et al (2015) Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. RSC Adv 5(63):51055–51066

    Article  CAS  Google Scholar 

  139. Ngernyuang N et al (2022) Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 8(12):e12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. F. Hosseini for her assistance.

Funding

This work was supported by Ferdowsi University of Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad-Saegh Lotfi was responsible for conceptualization and investigation, and Fatemeh B. Rassouli supervised and edited the manuscript.

Corresponding author

Correspondence to Fatemeh B. Rassouli.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, MS., Rassouli, F.B. Natural Flavonoid Apigenin, an Effective Agent Against Nervous System Cancers. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03917-y

Keywords

Navigation