Skip to main content

Advertisement

Log in

Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Melatonin, the ‘hormone of darkness’ is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declare that the research data referred to those correctly cited in the paper’s reference section.

References

  1. Ressmeyer AR, Mayo JC, Zelosko V, Sáinz RM, Tan DX, Poeggeler B et al (2003) Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 8(4):205–213

    Article  CAS  PubMed  Google Scholar 

  2. Iriti M, Varoni EM, Vitalini S (2010) Melatonin in traditional Mediterranean diets. J Pineal Res 49(2):101–105

    CAS  PubMed  Google Scholar 

  3. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351(2):152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lerner AB, Case JD, Heinzelman RV (1959) Structure of melatonin 1. J Am Chem Soc 81(22):6084–6085

    Article  CAS  Google Scholar 

  5. Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273(13):2813–2838

    Article  CAS  PubMed  Google Scholar 

  6. Garbarino-Pico E, Carpentieri AR, Contin MA, Sarmiento MIK, Brocco MA, Panzetta P et al (2004) Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetyl serotonin during the day. J Biol Chem 279(49):51172–51181

    Article  CAS  PubMed  Google Scholar 

  7. Waterhouse J, Reilly T, Atkinson G, Edwards B (2007) Jet lag: trends and coping strategies. The Lancet 369(9567):1117–1129

    Article  Google Scholar 

  8. Escames G, López A, Antonio Garcia J, García L, Acuña-Castroviejo D, Joaquin Garcia J et al (2010) The role of mitochondria in brain ageing and the effects of melatonin. Curr Neuropharmacol 8(3):182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ (2009) Clinical aspects of melatonin in the acute coronary syndrome. Curr Vasc Pharmacol 7(3):367–373

    Article  CAS  PubMed  Google Scholar 

  10. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49(8):654–664

    Article  CAS  PubMed  Google Scholar 

  11. Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF et al (2017) Melatonin: protection against age-related cardiac pathology. Ageing Res Rev 35:336–349

    Article  CAS  PubMed  Google Scholar 

  12. Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi Perumal SR et al (2006) Melatonin in mood disorders. World J Biol Psychiatry 7(3):138–151

    Article  PubMed  Google Scholar 

  13. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  14. Lissoni P, Pittalis S, Rovelli F, Zecchini S, Casati M, Tremolada M et al (1996) Immunomodulatory properties of a pineal indole hormone other than melatonin, the 5-methoxytryptophol. J Biol Regul Homeost Agents 10(1):27–30

    CAS  PubMed  Google Scholar 

  15. Mazzoccoli G, Carughi S, de Cata A, La Viola M, Vendemiale G (2005) Melatonin and cortisol serum levels in lung cancer patients at different stages of disease. Med Sci Monit 11(6):288

    Google Scholar 

  16. Scholtens RM, van Munster BC, van Kempen MF, de Rooij SEJA (2016) Physiological melatonin levels in healthy older people: a systematic review. J Psychosom Res 86:20–27

    Article  PubMed  Google Scholar 

  17. Lanfumey L, Mongeau R, Hamon M (2013) Biological rhythms and melatonin in mood disorders and their treatments. Pharmacol Ther 138(2):176–184

    Article  CAS  PubMed  Google Scholar 

  18. Karasek M, Reiter RJ (2002) Melatonin and aging. Neuroendocrinol Lett 23:14–16

    CAS  PubMed  Google Scholar 

  19. Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356

    Article  CAS  PubMed  Google Scholar 

  20. Schippers KJ, Nichols SA (2014) Deep, dark secrets of melatonin in animal evolution. Cell 159(1):9–10

    Article  CAS  PubMed  Google Scholar 

  21. Masters A, Pandi-Perumal SR, Seixas A, Girardin Jean-Louis G, McFarlane SI (2015) Melatonin, the hormone of darkness: From sleep promotion to ebola treatment. Brain Disord Ther 4:151. https://doi.org/10.4172/2168-975X.1000151

    Article  Google Scholar 

  22. Chen CY, Chen FH, Lee CC, Lee KW, Hsiao HS (1998) Sonographic characteristics of the cavum velum interpositum. Am J Neuroradiol 19(9):1631–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan DX, Xu B, Zhou X, Reiter RJ (2018) Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules 23(2):301

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pagan C, Botros HG, Poirier K, Dumaine A, Jamain S, Moreno S et al (2011) Mutation screening of ASMT, the last enzyme of the melatonin pathway, in a large sample of patients with intellectual disability. BMC Med Genet 12(1):1–6

    Article  Google Scholar 

  25. Gunata M, Parlakpinar H, Acet HA (2020) Melatonin: a review of its potential functions and effects on neurological diseases. Rev Neurol (Paris) 176(3):148–165

    Article  CAS  PubMed  Google Scholar 

  26. Garcia RAP, Afeche SC, Scialfa JH, do Amaral FG, dos Santos SHJ, Lima FB et al (2008) Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland. Life Sci. 82(1–2):108–14

    Article  CAS  PubMed  Google Scholar 

  27. Liu WC, Wang X, Zhang X, Chen X, Jin X (2017) Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front Aging Neurosci 9:165

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tosini G, Baba K, Hwang CK, Iuvone PM (2012) Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 103:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiechmann AF, Sherry DM (2013) Role of melatonin and its receptors in the vertebrate retina. Int Rev Cell Mol Biol 300:211–242

    Article  CAS  PubMed  Google Scholar 

  30. Hiragaki S, Baba K, Coulson E, Kunst S, Spessert R, Tosini G (2014) Melatonin signalling modulates clock genes expression in the mouse retina. PLoS ONE 9(9):e106819

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brzozowski T, Jaworek J (2014) Editorial (Thematic issues: basic and clinical aspects of melatonin in the gastrointestinal tract. new advancements and future perspectives). Curr Pharm Des. 20(30):4785–7

    Article  CAS  PubMed  Google Scholar 

  32. Pal PK, Sarkar S, Chattopadhyay A, Tan DX, Bandyopadhyay D (2019) Enterochromaffin cells as the source of melatonin: key findings and functional relevance in mammals. Melatonin Res 2(4):61–82

    Article  Google Scholar 

  33. Rezzani R, Franco C, Franceschetti L, Gianò M, Favero G (2022) A focus on enterochromaffin cells among the enteroendocrine cells: localization, morphology, and role. Int J Mol Sci 23(7):3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahluwalia A, Brzozowska IM, Hoa N, Jones MK, Tarnawski AS (2018) Melatonin signaling in mitochondria extends beyond neurons and neuroprotection: implications for angiogenesis and cardio/gastroprotection. Proc Natl Acad Sci 115(9):E1942–E1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paulose JK, Cassone VM (2016) The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes. Gut Microbes 7(5):424–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu D, Ma Y, Ding S, Jiang H, Fang J (2018) Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. Biomed Res Int 2018(2607679):6. https://doi.org/10.1155/2018/2607679

  37. Leon J, Acuña-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ (2004) Melatonin and mitochondrial function. Life Sci 75(7):765–790

    Article  CAS  PubMed  Google Scholar 

  38. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21(1):172–188

    Article  PubMed  Google Scholar 

  39. Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65(1):e12514

    Article  PubMed  Google Scholar 

  40. Pryor WA (1988) Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA. Free Radical Biol Med 4(4):219–223

    Article  CAS  Google Scholar 

  41. Candeias LP, Steenken S (2000) Reaction of HO* with guanine derivatives in aqueous solution: formation of two different redox-active OH-adduct radicals and their unimolecular transformation reactions. Properties of G(-H)*. Chemistry. 6(3):475–84

    Article  CAS  PubMed  Google Scholar 

  42. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free Radical Biol Med 30(5):463–488

    Article  CAS  Google Scholar 

  43. Douki T, Cadet J (1996) Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic Res 24(5):369–380

    Article  CAS  PubMed  Google Scholar 

  44. Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radical Biol Med 31(10):1279–1283

    Article  CAS  Google Scholar 

  45. Dungel P, Mittermayr R, Haindl S, Osipov A, Wagner C, Redl H et al (2008) Illumination with blue light reactivates respiratory activity of mitochondria inhibited by nitric oxide, but not by glycerol trinitrate. Arch Biochem Biophys 471(2):109–115

    Article  CAS  PubMed  Google Scholar 

  46. Tan D, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: an ever-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V et al (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36(1):1–9

    Article  CAS  PubMed  Google Scholar 

  48. Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R (2008) Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 17(9):713–730

    Article  CAS  PubMed  Google Scholar 

  49. Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 44(4):175–200

    Article  CAS  PubMed  Google Scholar 

  50. Galano A (2011) On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys Chem Chem Phys 13(15):7178–7188

    Article  CAS  PubMed  Google Scholar 

  51. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites. AFMK and AMK J Pineal Res 54(3):245–257

    CAS  PubMed  Google Scholar 

  52. Tan DX, Manchester L, Reiter R, Plummer B (1999) Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Neurosignals 8(1–2):70–74

    Article  CAS  Google Scholar 

  53. Hardeland R (2005) Antioxidative protection by melatonin. Endocrine 27(2):119–130

    Article  CAS  PubMed  Google Scholar 

  54. Antonelli M, Kushner I (2017) It’s time to redefine inflammation. FASEB J 31(5):1787–1791

    Article  CAS  PubMed  Google Scholar 

  55. Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5(9):e00362

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J (2013) A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 54(1):1–14

    Article  CAS  PubMed  Google Scholar 

  57. Agil A, Reiter RJ, Jiménez-Aranda A, Ibán-Arias R, Navarro-Alarcón M, Marchal JA et al (2013) Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J Pineal Res 54(4):381–388

    Article  PubMed  Google Scholar 

  58. Baeuerle PA, Baltimore D (1996) NF-κB: ten years after. Cell 87(1):13–20

    Article  CAS  PubMed  Google Scholar 

  59. Brzezinski A (1997) Melatonin in humans. N Engl J Med 336(3):186–195

    Article  CAS  PubMed  Google Scholar 

  60. Cuzzocrea S, Misko TP, Costantino G, Mazzon E, Micali A, Caputi AP et al (2000) Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J 14(9):1061–1072

    Article  CAS  PubMed  Google Scholar 

  61. Cuzzocrea S, Reiter RJ (2002) Pharmacological actions of melatonin in acute and chronic inflammation. Curr Top Med Chem 2(2):153–165

    Article  CAS  PubMed  Google Scholar 

  62. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93(3):350–384

    Article  CAS  PubMed  Google Scholar 

  63. Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX (2000) Melatonin and its relation to the immune system and inflammation. Ann NY Acad Sci 917(1):376–386

    Article  CAS  PubMed  Google Scholar 

  64. Bertuglia S, Marchiafava PL, Colantuoni A (1996) Melatonin prevents ischemia reperfusion injury in hamster cheek pouch microcirculation. Cardiovasc Res 31(6):947–952

    Article  CAS  PubMed  Google Scholar 

  65. Lloyd JK (1990) The importance of vitamin E in human nutrition. Acta Pædiatrica. 79(1):6–11

    Article  CAS  Google Scholar 

  66. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51(1):1–16

    Article  CAS  PubMed  Google Scholar 

  67. Alegre F, Pelegrin P, Feldstein AE (2017) Inflammasomes in liver fibrosis. In: Seminars in liver disease. Thieme Medical Publishers, Seventh Avenue, New York, NY, USA, pp 119–127

    Google Scholar 

  68. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell DevBiol 28(1):137–161

    Article  CAS  Google Scholar 

  69. Liu P, Xie Q, Wei T, Chen Y, Chen H, Shen W (2015) Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochem Biophys Res Commun 468(1–2):319–325

    Article  CAS  PubMed  Google Scholar 

  70. Fernández-Gil B, Moneim AEA, Ortiz F, Shen YQ, Soto-Mercado V, Mendivil-Perez M et al (2017) Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS ONE 12(4):e0174474

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rahim I, Djerdjouri B, Sayed RK, Fernández-Ortiz M, Fernández-Gil B, Hidalgo-Gutiérrez A et al (2017) Melatonin administration to wild-type mice and nontreated NLRP 3 mutant mice share similar inhibition of the inflammatory response during sepsis. J Pineal Res 63(1):e12410

    Article  Google Scholar 

  72. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y et al (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34(4):660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Z, Zhong L, Xian R, Yuan B (2015) MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Mol Immunol 65(2):267–276

    Article  CAS  PubMed  Google Scholar 

  74. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N et al (2017) Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 15(3):434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. di Bella G, Mascia F, Gualano L, di Bella L (2013) Melatonin anticancer effects. Int J Mol Sci 14(2):2410–2430

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML (2016) MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:361

    Article  CAS  PubMed  Google Scholar 

  77. Wongprayoon P, Govitrapong P (2021) Melatonin receptor as a drug target for neuroprotection. Curr Mol Pharmacol 14(2):150–164

    Article  CAS  PubMed  Google Scholar 

  78. Lee CH, Yoo K, Choi JH, Park OK, Hwang IK, Kwon Y et al (2010) Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 88(12):2630–2640

    Article  CAS  PubMed  Google Scholar 

  79. Reiter RJ, Tan DX, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. rontiers in Physiology, vol 5. Frontiers Media SA, p 377

    Google Scholar 

  80. Garofoli F, Longo S, Pisoni C, Accorsi P, Angelini M, Aversa S et al (2021) Oral melatonin as a new tool for neuroprotection in preterm newborns: study protocol for a randomized controlled trial. Trials 22(1):1–12

    Article  Google Scholar 

  81. Elsayed NA, Boyer TM, Burd I (2021) Fetal neuroprotective strategies: Therapeutic agents and their underlying synaptic pathways. Front Synaptic Neurosci 13:680899. https://doi.org/10.3389/fnsyn.2021.680899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chern CM, Liao JF, Wang YH, Shen YC (2012) Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radical Biol Med 52(9):1634–1647

    Article  CAS  Google Scholar 

  83. Lee RHC, Lee MHH, Wu CYC, e Silva AC, Possoit HE, Hsieh TH et al (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res. 13(3):373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sadanandan N, Cozene B, Cho J, Park YJ, Saft M, Gonzales-Portillo B et al (2020) Melatonin—a potent therapeutic for stroke and stroke-related dementia. Antioxidants 9(8):672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z et al (2020) Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-κB pathway. Front Neurosci 14:848

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hossain M, Uddin M, Uddin GM, Sumsuzzman DM, Islam M, Barreto GE et al (2019) Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol 56(12):8255–8276

    Article  CAS  PubMed  Google Scholar 

  87. Ramezani M, Komaki A, Hashemi-Firouzi N, Mortezaee K, Faraji N, Golipoor Z (2020) Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer’s disease. J Chem Neuroanat 108:101804

    Article  CAS  PubMed  Google Scholar 

  88. Ma J, Shaw VE, Mitrofanis J (2009) Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord 15(4):307–314

    Article  PubMed  Google Scholar 

  89. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 58(3):262–274

    Article  CAS  PubMed  Google Scholar 

  90. Aly H, Elmahdy H, El-Dib M, Rowisha M, Awny M, El-Gohary T et al (2015) Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 35(3):186–191

    Article  CAS  PubMed  Google Scholar 

  91. Duan C, Jenkins ZM, Castle D (2021) Therapeutic use of melatonin in schizophrenia: a systematic review. World J Psychiatry 11(8):463

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shomrat T, Nesher N (2019) Updated view on the relation of the pineal gland to autism spectrum disorders. Front Endocrinol (Lausanne) 10:37

    Article  PubMed  Google Scholar 

  93. Borlongan CV, Sumaya I, Moss D, Kumazaki M, Sakurai T, Hida H, Nishino H (2003) Melatonin-secreting pineal gland: a novel tissue source for neural transplantation therapy in stroke. Cell Transplant 12(3):225–234

    Article  CAS  PubMed  Google Scholar 

  94. Chen HY, Chen TY, Lee MY, Chen ST, Hsu YS, Kuo YL, Chang GL, Wu TS, Lee EJ (2006) Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood–brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 41(2):175–182

    Article  PubMed  Google Scholar 

  95. Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72

    Article  Google Scholar 

  96. Baldeiras I, Santana I, Proença MT, Garrucho MH, Pascoal R, Rodrigues A, Duro D, Oliveira CR (2008) Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimers Dis 15(1):117–128

    Article  CAS  PubMed  Google Scholar 

  97. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47(1):82–96

    Article  CAS  PubMed  Google Scholar 

  98. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154(5):1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb-and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res 50(2):97–109

    Article  CAS  PubMed  Google Scholar 

  100. Xi Y, Liu M, Xu S, Hong H, Chen M, Tian L, Xie J, Deng P, Zhou C, Zhang L, He M (2019) Inhibition of SERPINA3N-dependent neuroinflammation is essential for melatonin to ameliorate trimethyl tin chloride–induced neurotoxicity. J Pineal Res 67(3):e12596

    Article  PubMed  Google Scholar 

  101. Gurunathan S, Qasim M, Kang MH, Kim JH (2021) Role and therapeutic potential of melatonin in various type of cancers. Onco Targets Ther 18:2019–2052

    Article  Google Scholar 

  102. Zheng Y, Tu J, Wang X, Yu Y, Li J, Jin Y, Wu J (2019) The therapeutic effect of melatonin on GC by inducing cell apoptosis and autophagy induced by endoplasmic reticulum stress. Onco Targets Ther 12:10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pourhanifeh MH, Sharifi M, Reiter RJ, Davoodabadi A, Asemi Z (2019) Melatonin and non-small cell lung cancer: new insights into signaling pathways. Cancer Cell Int 19(1):1–7

    Article  Google Scholar 

  104. Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J (2020) Melatonin: a potential therapeutic option for breast cancer. Trends Endocrinol Metab 31(11):859–871

    Article  CAS  PubMed  Google Scholar 

  105. González-González A, Mediavilla MD, Sánchez-Barceló EJ (2018) Melatonin: a molecule for reducing breast cancer risk. Molecules 23(2):336

    Article  PubMed  PubMed Central  Google Scholar 

  106. Moretti E, Favero G, Rodella LF, Rezzani R (2020) Melatonin’s antineoplastic potential against glioblastoma. Cells 9(3):599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ammar OA, El-Missiry MA, Othman AI, Amer ME (2022) Melatonin is a potential oncostatic agent to inhibit HepG2 cell proliferation through multiple pathways. Heliyon 8(1):e08837. https://doi.org/10.1016/j.heliyon.2022.e08837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C (2021) Melatonin as an adjuvant to antiangiogenic cancer treatments. Cancers 13(13):3263

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gurunathan S, Jeyaraj M, Kang MH, Kim JH (2020) Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants 9(4):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Talib WH (2020) A ketogenic diet combined with melatonin overcomes cisplatin and vincristine drug resistance in breast carcinoma syngraft. Nutrition 1(72):110659

    Article  Google Scholar 

  111. Tamarindo GH, Ribeiro DL, Gobbo MG, Guerra LH, Rahal P, Taboga SR, Gadelha FR, Góes RM (2019) Melatonin and docosahexaenoic acid decrease proliferation of PNT1A prostate benign cells via modulation of mitochondrial bioenergetics and ROS production. Oxid Med Cell Longev 9:2019

    Google Scholar 

  112. Paroni R, Terraneo L, Bonomini F, Finati E, Virgili E, Bianciardi P, Favero G, Fraschini F et al (2014) Antitumour activity of melatonin in a mouse model of human prostate cancer: relationship with hypoxia signalling. J Pineal Res 57(1):43–52

    Article  CAS  PubMed  Google Scholar 

  113. Zemła A, Grzegorek I, Dzięgiel P, Jabłońska K (2017) Melatonin synergizes the chemotherapeutic effect of cisplatin in ovarian cancer cells independently of MT1 melatonin receptors. In Vivo 31(5):801–809

    PubMed  PubMed Central  Google Scholar 

  114. Wang Q, Sun Z, Du L, Xu C, Wang Y, Yang B, He N, Wang J et al (2018) Melatonin sensitizes human colorectal cancer cells to γ-ray ionizing radiation in vitro and in vivo. Int J Mol Sci 19(12):3974

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kleszczyński K, Hardkop LH, Fischer TW (2011) Differential effects of melatonin as a broad range UV-damage preventive dermato-endocrine regulator. Dermato-Endocrinology 3(1):27–31

    Article  PubMed  PubMed Central  Google Scholar 

  116. Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT (2017) Melatonin and its metabolites protect human melanocytes against UVB-induced damage: involvement of NRF2-mediated pathways. Sci Rep 7(1):1274

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sun CK, Chen CH, Chang CL, Chiang HJ, Sung PH, Chen KH, Chen YL, Chen SY et al (2017) Melatonin treatment enhances therapeutic effects of exosomes against acute liver ischemia-reperfusion injury. Am J Transl Res 9(4):1543

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao Z, Fang Y, Lu Y, Tan D, Du C, Li Y, Ma Q, Yu J et al (2017) Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J Pineal Res 62(3):e12389

    Article  Google Scholar 

  119. Reiter RJ, Ma Q, Sharma R (2020) Treatment of Ebola and other infectious diseases: melatonin “goes viral.” Melatonin Research 3(1):43–57

    Article  Google Scholar 

  120. Reiter RJ, Abreu-Gonzalez P, Marik PE, Dominguez-Rodriguez A (2020) Therapeutic algorithm for use of melatonin in patients with covid-19. Front Med 7:226. https://doi.org/10.3389/fmed.2020.00226

    Article  Google Scholar 

  121. Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D (2022) Potential and possible therapeutic effects of melatonin on SARS-CoV-2 infection. Antioxidants 11(1):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang Y, Li X, Grailer JJ, Wang N, Wang M, Yao J, Zhong R, Gao GF et al (2016) Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 60(4):405–414

    Article  CAS  PubMed  Google Scholar 

  123. Shi CS, Nabar NR, Huang NN, Kehrl JH (2019) SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discovery 5(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fallah R, Shoroki F, Ferdosian F (2015) Safety and efficacy of melatonin in pediatric migraine prophylaxis. Current Drug Safety 10(2):132–5

    Article  CAS  PubMed  Google Scholar 

  125. Langston-Cox A, Marshall SA, Lu D, Palmer KR, Wallace EM (2021) Melatonin for the management of preeclampsia: a review. Antioxidants 10(3):376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Genario R, Cipolla-Neto J, Bueno AA, Santos HO (2021) Melatonin supplementation in the management of obesity and obesity-associated disorders: a review of physiological mechanisms and clinical applications. Pharmacol Res 1(163):105254

    Article  Google Scholar 

  127. Cecon E, Chen M, Marçola M, Fernandes PA, Jockers R, Markus RP (2015) Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway. FASEB J 29(6):2566–2582

    Article  CAS  PubMed  Google Scholar 

  128. Karolczak K, Watala C (2019) The mystery behind the pineal gland: melatonin affects the metabolism of cholesterol. Oxid Med Cell Longev 10:2019

    Google Scholar 

  129. de Castro TB, Bordin-Junior NA, de Almeida EA, de Campos Zuccari DA (2018) Evaluation of melatonin and AFMK levels in women with breast cancer. Endocrine 62:242–249

    Article  PubMed  Google Scholar 

  130. Misaka T, Yoshihisa A, Yokokawa T, Sato T, Oikawa M, Kobayashi A, Yamaki T, Sugimoto K et al (2019) Plasma levels of melatonin in dilated cardiomyopathy. J Pineal Res 66(4):e12564

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wolden-Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141(2):487–497

    Article  CAS  PubMed  Google Scholar 

  132. Prunet-Marcassus B, Desbazeille M, Bros A, Louche K, Delagrange P, Renard P, Casteilla L, Pénicaud L (2003) Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 144(12):5347–5352

    Article  CAS  PubMed  Google Scholar 

  133. Terrón MP, Delgado-Adámez J, Pariente JA, Barriga C, Paredes SD, Rodríguez AB (2013) Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats. Physiol Behav 13(118):8–13

    Article  Google Scholar 

  134. Marqueze EC, Nogueira LF, Vetter C, Skene DJ, Cipolla-Neto J, Moreno CR (2021) Exogenous melatonin decreases circadian misalignment and body weight among early types. J Pineal Res 71(2):e12750

    Article  CAS  PubMed  Google Scholar 

  135. Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, Zhai Y (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62(4):e12399

    Article  Google Scholar 

  136. Gandhi AV, Mosser EA, Oikonomou G, Prober DA (2015) Melatonin is required for the circadian regulation of sleep. Neuron 85(6):1193–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xie Z, Chen F, Li WA, Geng X, Li C, Meng X, Feng Y, Liu W et al (2017) A review of sleep disorders and melatonin. Neurol Res 39(6):559–565

    Article  CAS  PubMed  Google Scholar 

  138. Ng KY, Leong MK, Liang H, Paxinos G (2017) Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct 222:2921–2939

    Article  CAS  PubMed  Google Scholar 

  139. Nosjean O, Ferro M, Cogé F, Beauverger P, Henlin JM, Lefoulon F, Fauchere JL, Delagrange P et al (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275(40):31311–31317

    Article  CAS  PubMed  Google Scholar 

  140. Shinozuka K, Staples M, Borlongan CV (2013) Melatonin-based therapeutics for neuroprotection in stroke. Int J Mol Sci 14(5):8924–8947

    Article  PubMed  PubMed Central  Google Scholar 

  141. Carretero M, Escames G, López LC, Venegas C, Dayoub JC, Garcia L, Acuña-Castroviejo D (2009) Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 47(2):192–200

    Article  CAS  PubMed  Google Scholar 

  142. Kabadi SV, Maher TJ (2010) Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Ann N Y Acad Sci 1199(1):105–113

    Article  CAS  PubMed  Google Scholar 

  143. Wang X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 15(4):345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chern CM, Liao JF, Wang YH, Shen YC (2012) Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radical Biol Med 52(9):1634–1647

    Article  CAS  Google Scholar 

  145. Dehghan F, Hadad MK, Asadikram G, Najafipour H, Shahrokhi N (2013) Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: role of oxidative stresses. Arch Med Res 44(4):251–258

    Article  CAS  PubMed  Google Scholar 

  146. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278

    Article  CAS  PubMed  Google Scholar 

  147. Mishra A, Paul S, Swarnakar S (2011) Downregulation of matrix metalloproteinase-9 by melatonin during prevention of alcohol-induced liver injury in mice. Biochimie 93(5):854–866

    Article  CAS  PubMed  Google Scholar 

  148. Hu S, Yin S, Jiang X, Huang D, Shen G (2009) Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. Eur J Pharmacol 616(1–3):287–292

    Article  CAS  PubMed  Google Scholar 

  149. Wang F, Zhang L, Wu S, Li W, Sun M, Feng W, Ding D, Wong SY et al (2019) Night shift work and abnormal liver function: is non-alcohol fatty liver a necessary mediator? Occup Environ Med 76(2):83–89

    Article  PubMed  Google Scholar 

  150. Okauchi H, Hashimoto C, Nakao R, Oishi K (2019) Timing of food intake is more potent than habitual voluntary exercise to prevent diet-induced obesity in mice. Chronobiol Int 36(1):57–74

    Article  CAS  PubMed  Google Scholar 

  151. Masarone M, Rosato V, Dallio M et al (2018) Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxidative Med Cell Longev 2018(9547613):14

  152. Das N, Mandala A, Naaz S, Giri S, Jain M, Bandyopadhyay D, Reiter RJ, Roy SS (2017) Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res 62(4):e12404

    Article  Google Scholar 

  153. Bona S, Rodrigues G, Moreira AJ, Di Naso FC, Dias AS, Da Silveira TR, Marroni CA, Marroni NP (2018) Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. JGH Open 2(4):117–123

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang YR, Hong RT, Xie YY, Xu JM (2018) Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr Med Sci 38:236–244

    Article  CAS  PubMed  Google Scholar 

  155. Kang JW, Hong JM, Lee SM (2016) Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 60(4):383–393

    Article  CAS  PubMed  Google Scholar 

  156. Crespo I, San-Miguel B, Fernández A, De Urbina JO, González-Gallego J, Tuñón MJ (2015) Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice. Transl Res 165(2):346–357

    Article  CAS  PubMed  Google Scholar 

  157. Hong RT, Xu JM, Mei Q (2009) Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol WJG 15(12):1452

    Article  CAS  PubMed  Google Scholar 

  158. Favero G, Franco C, Stacchiotti A, Rodella LF, Rezzani R (2020) Sirtuin1 role in the melatonin protective effects against obesity-related heart injury. Front Physiol 11(11):103

    Article  PubMed  PubMed Central  Google Scholar 

  159. Cimen B, Uz A, Cetin I, Cimen L, Cetin A (2017) Melatonin supplementation ameliorates energy charge and oxidative stress induced by acute exercise in rat heart tissue. Acta Cardiologica Sinica 33(5):530

    PubMed  PubMed Central  Google Scholar 

  160. Vazan R, Pancza D, Béder I, Styk J (2005) Ischemia-reperfusion injury-antiarrhythmic effect of melatonin associated with reduced recovering of contractility. Gen Physiol Biophys 24(3):355

    CAS  PubMed  Google Scholar 

  161. Şehirli AÖ, Koyun D, Tetik Ş, Özsavcı D, Yiğiner Ö, Çetinel Ş, Tok OE, Kaya Z et al (2013) Melatonin protects against ischemic heart failure in rats. J Pineal Res 55(2):138–148

    Article  PubMed  Google Scholar 

  162. Drobnik J, Slotwinska D, Olczak S, Tosik D, Pieniazek A, Matczak K, Koceva-Chyla A, Szczepanowska A (2011) Pharmacological doses of melatonin reduce the glycosaminoglycan level within the infarcted heart scar. J Physiol Pharmacol 62(1):29

    CAS  PubMed  Google Scholar 

  163. Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J et al (2018) Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta BBA Mol Basis Dis 1864(2):563–78

    Article  CAS  Google Scholar 

  164. Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z et al (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55(3):275–286

    Article  CAS  PubMed  Google Scholar 

  165. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H, Chen Y (2018) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+]c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23:101–113

    Article  CAS  PubMed  Google Scholar 

  166. Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278(1):55–67

    Article  CAS  PubMed  Google Scholar 

  167. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351(2):152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Paulis L, Simko F, Laudon M (2012) Cardiovascular effects of melatonin receptor agonists. Expert Opin Investig Drugs 21(11):1661–1678

    Article  CAS  PubMed  Google Scholar 

  169. Ting KN, Dunn WR, Davies DJ, Sugden D, Delagrange P, Guardiola-Lemaître B, Scalbert E, Wilson VG (1997) Studies on the vasoconstrictor action of melatonin and putative melatonin receptor ligands in the tail artery of juvenile Wistar rats. Br J Pharmacol 122(7):1299–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Girouard H, Chulak C, Lejossec M, Lamontagne D, de Champlain J (2001) Vasorelaxant effects of the chronic treatment with melatonin on mesenteric artery and aorta of spontaneously hypertensive rats. J Hypertens 19(8):1369–1377

    Article  CAS  PubMed  Google Scholar 

  171. Simko F, Pechanova O, Repova Bednarova K, Krajcirovicova K, Celec P, Kamodyova N, Zorad S, Kucharska J, Gvozdjakova A, Adamcova M, Paulis L (2014) Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediat Inflamm 2014(703175):10. https://doi.org/10.1155/2014/703175

  172. Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, Battastini AM, Salbego C (2010) Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res 48(3):230–238

    Article  CAS  PubMed  Google Scholar 

  173. Tian YM, Zhang GY, Dai YR (2003) Melatonin rejuvenates degenerated thymus and redresses peripheral immune functions in aged mice. Immunol Lett 88(2):101–104

    Article  CAS  PubMed  Google Scholar 

  174. Zhou J, Zhang S, Zhao X, Wei T (2008) Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-β1–42. J Pineal Res 45(2):157–165

    Article  CAS  PubMed  Google Scholar 

  175. Zhou LL, Wei W, Si JF, Yuan DP (2010) Regulatory Effect of Melatonin on Cytokine Disturbances in the Pristane-Induced Lupus Mice. Mediat Inflamm 2010(951210):7. https://doi.org/10.1155/2010/951210

  176. El-Bakry HA, Ismail IA, Soliman SS (2018) Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways. J Photochem Photobiol B 1(186):69–80

    Article  Google Scholar 

  177. Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y et al (2019) Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res 66(2):e12547

    Article  PubMed  Google Scholar 

  178. Walecka-Kapica E, Chojnacki J, Stępień A, Wachowska-Kelly P, Klupińska G, Chojnacki C (2015) Melatonin and female hormone secretion in postmenopausal overweight women. Int J Mol Sci 16(1):1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Carlomagno G, Minini M, Tilotta M, Unfer V (2018) From implantation to birth: insight into molecular melatonin functions. Int J Mol Sci 19(9):2802

    Article  PubMed  PubMed Central  Google Scholar 

  180. Katzer D, Pauli L, Mueller A, Reutter H, Reinsberg J, Fimmers R, Bartmann P, Bagci S (2016) Melatonin concentrations and antioxidative capacity of human breast milk according to gestational age and the time of day. J Hum Lact. 32(4):NP105-10

    Article  PubMed  Google Scholar 

  181. Dumbell R, Matveeva O, Oster H (2016) Circadian clocks, stress, and immunity. Front Endocrinol 2(7):37

    Google Scholar 

  182. Rochow N, Fusch G, Choi A, Chessell L, Elliott L, McDonald K, Kuiper E, Purcha M et al (2013) Target fortification of breast milk with fat, protein, and carbohydrates for preterm infants. J Pediatr 163(4):1001–1007

    Article  CAS  PubMed  Google Scholar 

  183. Man GC, Zhang T, Chen X, Wang J, Wu F, Liu Y, Wang CC, Cheong Y et al (2017) The regulations and role of circadian clock and melatonin in uterine receptivity and pregnancy—an immunological perspective. Am J Reprod Immunol 78(2):e12715

    Article  Google Scholar 

  184. Hosseini A, Ghaleh HE, Aghamollaei H, Ramandi MF, Alishiri G, Shahriary A, Hassanpour K, Tat M et al (2021) Evaluation of Th1 and Th2 mediated cellular and humoral immunity in patients with COVID-19 following the use of melatonin as an adjunctive treatment. Eur J Pharmacol 5(904):174193

    Article  Google Scholar 

  185. İlhan S, Ateşşahin D, Ateşşahin A, Mutlu E, Onat E, Şahna E (2015) 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced hypertension: the beneficial effects of melatonin. Toxicol Ind Health 31(4):298–303

    Article  PubMed  Google Scholar 

  186. Rechciński T, Trzos E, Wierzbowska-Drabik K, Krzemińska-Pakuła M, Kurpesa M (2010) Melatonin for nondippers with coronary artery disease: assessment of blood pressure profile and heart rate variability. Hypertens Res 33(1):56–61

    Article  PubMed  Google Scholar 

  187. Reiter RJ, Tan DX, Tamura H, Cruz MH, Fuentes-Broto L (2014) Clinical relevance of melatonin in ovarian and placental physiology: a review. Gynecol Endocrinol 30(2):83–89

    Article  CAS  PubMed  Google Scholar 

  188. Reiter RJ, Tamura H, Tan DX, Xu XY (2014) Melatonin and the circadian system: contributions to successful female reproduction. Fertil Steril 102(2):321–328

    Article  CAS  PubMed  Google Scholar 

  189. Yie SM, Brown GM, Liu GY, Collins JA, Daya S, Hughes EG, Foster WG, Younglai EV (1995) Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. Hum Reprod 10(1):50–55

    Article  CAS  PubMed  Google Scholar 

  190. Schaeffer HJ, Sirotkin AV (1997) Melatonin and serotonin regulate the release of insulin-like growth factor-I, oxytocin and progesterone by cultured human granulosa cells. Exp Clin Endocrinol Diabetes 105(02):109–112

    Article  CAS  PubMed  Google Scholar 

  191. Okatani Y, Sagara Y (1995) Enhanced nocturnal melatonin secretion in women with functional secondary amenorrhea: relationship to opioid system and endogenous estrogen levels. Horm Res Paediatr 43(5):194–199

    Article  CAS  Google Scholar 

  192. Soliman A, Lacasse AA, Lanoix D, Sagrillo-Fagundes L, Boulard V, Vaillancourt C (2015) Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J Pineal Res 59(1):38–46

    Article  CAS  PubMed  Google Scholar 

  193. Sagrillo-Fagundes L, Assunção Salustiano EM, Ruano R, Markus RP, Vaillancourt C (2018) Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pineal Res 65(4):e12520

    Article  PubMed  Google Scholar 

  194. Díaz López B, Rodríguez ED, Urquijo C, Alvarez CF (2005) Melatonin influences on the neuroendocrine-reproductive axis. Ann N Y Acad Sci 1057(1):337–364

    Article  PubMed  Google Scholar 

  195. Cipolla-Neto J, Amaral FG, Soares JM Jr, Gallo CC, Furtado A, Cavaco JE, Gonçalves I, Santos CR et al (2022) The crosstalk between melatonin and sex steroid hormones. Neuroendocrinology 112(2):115–129

    Article  CAS  PubMed  Google Scholar 

  196. Yu K, Deng SL, Sun TC, Li YY, Liu YX (2018) Melatonin regulates the synthesis of steroid hormones on male reproduction: a review. Molecules 23(2):447

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in aetiology and treatment of breast cancer. The Lancet 312(8094):814–816

    Article  Google Scholar 

  198. Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR et al (2017) A circadian based inflammatory response–implications for respiratory disease and treatment. Sleep Sci Pract 1:1–9

    Google Scholar 

  199. Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14(4):8638–8683

    Article  PubMed  PubMed Central  Google Scholar 

  200. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P (2019) Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 10(4):1–2

    Article  Google Scholar 

  201. Espino Javier, Pariente José A, Rodríguez Ana B (2012) Oxidative stress and immunosenescence: Therapeutic effects of melatonin. Oxidative Med Cell Longev 2012(670294):9. https://doi.org/10.1155/2012/670294

  202. Hardeland R (2018) Melatonin and retinoid orphan receptors: demand for new interpretations after their exclusion as nuclear melatonin receptors. Melatonin Res 1(1):78–93

    Article  Google Scholar 

  203. Sreenivasan J, Ramachandran H (2008) The effect of ethanol on the developing chick brain. Ann Neurosci 15:83

    Google Scholar 

  204. Markus RP, Fernandes PA, Kinker GS, da Silveira C-M, Marçola M (2018) Immune-pineal axis–acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 175(16):3239–3250

    Article  CAS  PubMed  Google Scholar 

  205. Vishwas DK, Haldar C (2014) MT1 receptor expression and AA-NAT activity in lymphatic tissue following melatonin administration in male golden hamster. Int Immunopharmacol 22(1):258–265

    Article  CAS  PubMed  Google Scholar 

  206. Bhattacharya S, Patel KK, Dehari D, Agrawal AK, Singh S (2019) Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem 462:133–155

    Article  CAS  PubMed  Google Scholar 

  207. Srinivasan V, Maestroni GJ, Cardinali DP, Esquifino AI, Perumal SP, Miller SC (2005) Melatonin, immune function and aging. Immun Ageing 2:1–10

    Article  Google Scholar 

  208. Srinivasa V, Gobbi G, Shillcutt SD, Suzen S (eds) (2014) Melatonin: therapeutic value and neuroprotection. Taylor & Francis, BocaRaton, FL

  209. Raghavendra V, Kulkarni SK (2001) Possible antioxidant mechanism in melatonin reversal of aging and chronic ethanol-induced amnesia in plus-maze and passive avoidance memory tasks. Free Radical Biol Med 30(6):595–602

    Article  CAS  Google Scholar 

  210. Havranek O, Xu J, Köhrer S, Wang Z, Becker L, Comer JM, Henderson J, Ma W et al (2017) Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 130(8):995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Brazão V, Santello FH, Colato RP, Mazotti TT, Tazinafo LF, Toldo MP, do Vale GT, Tirapelli CR et al (2017) Melatonin: antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection. J Pineal Res 63(1):e12409

    Article  Google Scholar 

  212. Álvarez-Sánchez N, Cruz-Chamorro I, Álvarez-López AI, López-González A, Lacalle Remigio JR, Lardone PJ, Guerrero JM, Martínez-López A et al (2020) Seasonal variations in macrophages/microglia underlie changes in the mouse model of multiple sclerosis severity. Mol Neurobiol 57:4082–4089

    Article  PubMed  Google Scholar 

  213. Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Aguirre ME, Patel B et al (2015) Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162(6):1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Rehman SU, Ikram M, Ullah N, Alam SI, Park HY, Badshah H, Choe K, Ok KM (2019) Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells 8(7):760

    Article  PubMed  PubMed Central  Google Scholar 

  215. Farias TD, Cruz MM, Sa RC, Severi I, Perugini J, Senzacqua M, Cerutti SM, Giordano A et al (2019) Melatonin supplementation decreases hypertrophic obesity and inflammation induced by high-fat diet in mice. Front Endocrinol 5(10):750

    Article  Google Scholar 

  216. Wongchitrat P, Shukla M, Sharma R, Govitrapong P, Reiter RJ (2021) Role of melatonin on virus-induced neuropathogenesis—a concomitant therapeutic strategy to understand SARS-CoV-2 infection. Antioxidants 10(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Laliena A, Miguel BS, Crespo I, Alvarez M, González-Gallego J, Tuñón MJ (2012) Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J Pineal Res 53(3):270–278

    Article  CAS  PubMed  Google Scholar 

  218. Song C, Peng W, Yin S, Zhao J, Fu B, Zhang J, Mao T, Wu H et al (2016) Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep 6(1):35165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kireev RA, Vara E, Viña J, Tresguerres JA (2014) Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age 36:1–5

    Article  CAS  Google Scholar 

  220. Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X (2020) Melatonin and autophagy in aging-related neurodegenerative diseases. Int J Mol Sci 21(19):7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang L, Wang C, Choi WS (2022) Use of melatonin in cancer treatment: where are we? Int J Mol Sci 23(7):3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Colombo J, Jardim-Perassi BV, Ferreira JP, Braga CZ, Sonehara NM, Júnior RP, Moschetta MG, Girol AP et al (2018) Melatonin differentially modulates NF-кB expression in breast and liver cancer cells. Anticancer Agents Med Chem. 18(12):1688–94

    Article  CAS  PubMed  Google Scholar 

  223. Gao Y, Li ZT, Jin L, Lin J, Fan ZL, Zeng Z, Huang HF (2021) Melatonin attenuates hepatic ischemia-reperfusion injury in rats by inhibiting NF-κB signaling pathway. Hepatobiliary Pancreat Dis Int 20(6):551–560

    Article  CAS  PubMed  Google Scholar 

  224. Chuffa LG, Fioruci-Fontanelli BA, Mendes LO, Ferreira Seiva FR, Martinez M, Fávaro WJ, Domeniconi RF, Pinheiro PF et al (2015) Melatonin attenuates the TLR4-mediated inflammatory response through MyD88-and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer. 15(1):1–3

    Article  Google Scholar 

  225. Kopustinskiene DM, Bernatoniene J (2021) Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease. Pharmaceutics 13(2):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Rahbarghazi A, Siahkouhian M, Rahbarghazi R, Ahmadi M, Bolboli L, Keyhanmanesh R, Mahdipour M, Rajabi H (2021) Role of melatonin in the angiogenesis potential; highlights on the cardiovascular disease. J Inflamm 18(1):1

    Article  Google Scholar 

  227. Mu Q, Najafi M (2021) Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 15(907):174365

    Article  Google Scholar 

  228. Elmahallawy EK, Mohamed Y, Abdo W, Yanai T (2020) Melatonin and mesenchymal stem cells as a key for functional integrity for liver cancer treatment. Int J Mol Sci 21(12):4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu H, Xu L, Wei JE, Xie MR, Wang SE, Zhou RX (2011) Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat Rec (Hoboken) 294(5):781–788

    Article  CAS  PubMed  Google Scholar 

  230. Aliasgharzadeh A, Farhood B, Amini P, Saffar H, Motevaseli E, Rezapoor S, Nouruzi F, Shabeeb D et al (2019) Melatonin attenuates upregulation of Duox1, and Duox2 and protects against lung injury following chest irradiation in rats. Cell J (Yakhteh) 21(3):236

    Google Scholar 

  231. Uthaiwat P, Priprem A, Chio-Srichan S, Settasatian C, Lee YC, Mahakunakorn P, Boonsiri P, Leelayuwat C et al (2021) Oral administration of melatonin or succinyl melatonin niosome gel benefits 5-FU-induced small intestinal mucositis treatment in mice. AAPS PharmSciTech 22:1–1

    Article  Google Scholar 

  232. Kim JY, Park JH, Kim K, Leem J, Park KK (2019) Melatonin inhibits transforming growth factor-β1-induced epithelial–mesenchymal transition in AML12 hepatocytes. Biology 8(4):84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mortezaee K, Potes Y, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B (2019) Boosting immune system against cancer by melatonin: a mechanistic viewpoint. Life Sci 1(238):116960

    Article  Google Scholar 

  234. Voiculescu SE, Zygouropoulos N, Zahiu CD, Zagrean AM (2014) Role of melatonin in embryo fetal development. J Med Life 7(4):488

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, Polyakova V (2022) Melatonin as the cornerstone of neuroimmunoendocrinology. Int J Mol Sci 23(3):1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175(16):3190–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Damiani JM, Sweet BV, Sohoni P (2014) Melatonin: an option for managing sleep disorders in children with autism spectrum disorder. Am J Health Syst Pharm 71(2):95–101

    Article  PubMed  Google Scholar 

  238. Cuomo BM, Vaz S, Lee EA, Thompson C, Rogerson JM, Falkmer T (2017) Effectiveness of sleep-based interventions for children with autism spectrum disorder: a meta-synthesis. Pharmacotherapy 37(5):555–78

    Article  PubMed  Google Scholar 

  239. Adamczyk-Sowa M, Pierzchala K, Sowa P, Mucha S, Sadowska-Bartosz I, Adamczyk J, Hartel M (2014) Melatonin acts as antioxidant and improves sleep in MS patients. Neurochem Res 39:1585–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Aziz NA, Pijl H, Frölich M, Schröder-van der Elst JP, van der Bent C, Roelfsema F, Roos RA (2009) Delayed onset of the diurnal melatonin rise in patients with Huntington’s disease. J Neurol. 256:1961–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Herzog-Krzywoszanska R, Krzywoszanski L (2019) Sleep disorders in Huntington’s disease. Front Psychiatry 10:221

    Article  PubMed  PubMed Central  Google Scholar 

  242. Bougea A, Spantideas N, Lyras V, Avramidis T, Thomaidis T (2016) Melatonin 4 mg as prophylactic therapy for primary headaches: a pilot study. Funct Neurol 31(1):33

    PubMed  PubMed Central  Google Scholar 

  243. Bald EM, Nance CS, Schultz JL (2021) Melatonin may slow disease progression in amyotrophic lateral sclerosis: findings from the pooled resource open-access ALS clinic trials database. Muscle Nerve 63(4):572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Weishaupt JH, Bartels C, Pölking E, Dietrich J, Rohde G, Poeggeler B, Mertens N, Sperling S et al (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41(4):313–323

    Article  CAS  PubMed  Google Scholar 

  245. Kakhaki RD, Ostadmohammadi V, Kouchaki E, Aghadavod E, Bahmani F, Tamtaji OR, Reiter RJ, Mansournia MA et al (2020) Melatonin supplementation and the effects on clinical and metabolic status in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Neurol Neurosurg 1(195):105878

    Article  Google Scholar 

  246. Wade AG, Farmer M, Harari G, Fund N, Laudon M, Nir T, Frydman-Marom A, Zisapel N (2014) Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clin Interv Aging 9:947–961. https://doi.org/10.2147/CIA.S65625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang YY, Zheng W, Ng CH, Ungvari GS, Wei W, Xiang YT (2017) Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer’s disease. Int J Geriatr Psychiatry 32(1):50–57

    Article  PubMed  Google Scholar 

  248. Tordjman S, Najjar I, Bellissant E, Anderson GM, Barburoth M, Cohen D, Jaafari N, Schischmanoff O et al (2013) Advances in the research of melatonin in autism spectrum disorders: literature review and new perspectives. Int J Mol Sci 14(10):20508–20542

    Article  PubMed  PubMed Central  Google Scholar 

  249. Emens JS, Eastman CI (2017) Diagnosis and treatment of non-24-h sleep–wake disorder in the blind. Drugs 77(6):637–650

    Article  CAS  PubMed  Google Scholar 

  250. Roth T, Nir T, Zisapel N (2015) Prolonged release melatonin for improving sleep in totally blind subjects: a pilot placebo-controlled multicenter trial. Nat Sci Sleep 29:13–23

    Google Scholar 

  251. Dhillon S, Clarke M (2014) Tasimelteon: first global approval. Drugs 74:505–511

    Article  CAS  PubMed  Google Scholar 

  252. Lemoine P, Zisapel N (2012) Prolonged-release formulation of melatonin (Circadin) for the treatment of insomnia. Expert Opin Pharmacother 13(6):895–905

    Article  CAS  PubMed  Google Scholar 

  253. Srinivasan V, Pandi-Perumal SR, Trahkt I, Spence DW, Poeggeler B, Hardeland R, Cardinali DP (2009) Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int J Neurosci 119(6):821–846

    Article  CAS  PubMed  Google Scholar 

  254. Suhner A, Schlagenhauf P, Johnson R, Tschopp A, Steffen R (1998) Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiol Int 15(6):655–666

    Article  CAS  PubMed  Google Scholar 

  255. Cardinali DP, Bortman GP, Liotta G, Lloret SP, Albornoz LE, Cutrera RA, Batista J, Gallo PO (2002) A multifactorial approach employing melatonin to accelerate resynchronization of sleep–wake cycle after a 12 time-zone westerly transmeridian flight in elite soccer athletes. J Pineal Res 32(1):41–46

    Article  CAS  PubMed  Google Scholar 

  256. Brown GM, Pandi-Perumal SR, Trakht I, Cardinali DP (2009) Melatonin and its relevance to jet lag. Travel Med Infect Dis 7(2):69–81

    Article  PubMed  Google Scholar 

  257. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A (2016) A review of melatonin, its receptors and drugs. Eurasian J Med 48(2):135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Andersen LP, Gögenur I, Rosenberg J, Reiter RJ (2016) The safety of melatonin in humans. Clin Drug Investig 36:169–175

    Article  CAS  PubMed  Google Scholar 

  259. Foley HM, Steel AE (2019) Adverse events associated with oral administration of melatonin: a critical systematic review of clinical evidence. Complement Ther Med 1(42):65–81

    Article  Google Scholar 

  260. Talib WH, Alsayed AR, Abuawad A, Daoud S, Mahmod AI (2021) Melatonin in cancer treatment: current knowledge and future opportunities. Molecules 26(9):2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Seely D, Wu P, Fritz H, Kennedy DA, Tsui T, Seely AJ, Mills E (2012) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther 11(4):293–303

    Article  CAS  PubMed  Google Scholar 

  262. Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, Rezapoor S (2017) The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 9:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Palmer AC, Zortea M, Souza A, Santos V, Biazús JV, Torres IL, Fregni F, Caumo W (2020) Clinical impact of melatonin on breast cancer patients undergoing chemotherapy; effects on cognition, sleep and depressive symptoms: a randomized, double-blind, placebo-controlled trial. PLoS ONE 15(4):e0231379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ben-David MA, Elkayam R, Gelernter I, Pfeffer RM (2016) Melatonin for prevention of breast radiation dermatitis: a phase II, prospective, double-blind randomized trial. Isr Med Assoc J 18(3–4):188–192

    PubMed  Google Scholar 

  265. De Berardis D, Orsolini L, Serroni N, Girinelli G, Iasevoli F, Tomasetti C, Mazza M, Valchera A et al (2015) The role of melatonin in mood disorders. ChronoPhysiol Ther 11:65–75

    Article  Google Scholar 

  266. Van den Hoofdakker RH (1994) Chronobiological theories of nonseasonal affective disorders and their implications for treatment. J Biol Rhythms 9(2):157–183

    Article  PubMed  Google Scholar 

  267. Srinivasan V, De Berardis D, Shillcutt SD, Brzezinski A (2012) Role of melatonin in mood disorders and the antidepressant effects of agomelatine. Expert Opin Investig Drugs 21(10):1503–1522

    Article  CAS  PubMed  Google Scholar 

  268. Hansen MV, Danielsen AK, Hageman I, Rosenberg J, Gögenur I (2014) The therapeutic or prophylactic effect of exogenous melatonin against depression and depressive symptoms: a systematic review and meta-analysis. Eur Neuropsychopharmacol 24(11):1719–1728

    Article  CAS  PubMed  Google Scholar 

  269. Livianos L, Sierra P, Arques S, García A, Rojo L (2012) Is melatonin an adjunctive stabilizer? Psychiatry Clin Neurosci 66(1):82–83

    Article  PubMed  Google Scholar 

  270. Leppämäki S, Partonen T, Vakkuri O, Lönnqvist J, Partinen M, Laudon M (2003) Effect of controlled-release melatonin on sleep quality, mood, and quality of life in subjects with seasonal or weather-associated changes in mood and behaviour. Eur Neuropsychopharmacol 13(3):137–145

    Article  PubMed  Google Scholar 

  271. Kurdi MS, Muthukalai SP (2016) The efficacy of oral melatonin in improving sleep in cancer patients with insomnia: a randomized double-blind placebo-controlled study. Indian J Palliat Care 22(3):295

    Article  PubMed  PubMed Central  Google Scholar 

  272. Hansen MV, Madsen MT, Andersen LT, Hageman I, Rasmussen LS, Bokmand S, Rosenberg J, Gögenur I (2014) Effect of melatonin on cognitive function and sleep in relation to breast cancer surgery: A randomized, double-blind, placebo-controlled trial. Int J Breast Cancer 2014(416531):9. https://doi.org/10.1155/2014/416531

  273. Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M et al (2020) Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. Eur J Pharmacol 15(881):173282

    Article  Google Scholar 

  274. Hrushesky WJ, Lis CG, Levin RD, Grutsch JF, Birdsall T, Wood PA, Huff DF, Reynolds JL et al (2022) Daily evening melatonin prolongs survival among patients with advanced non-small-cell lung cancer. Biol Rhythm Res 53(7):1043–1057

    Article  Google Scholar 

  275. Onseng K, Johns NP, Khuayjarernpanishk T, Subongkot S, Priprem A, Hurst C, Johns J (2017) Beneficial effects of adjuvant melatonin in minimizing oral mucositis complications in head and neck cancer patients receiving concurrent chemoradiation. J Altern Complement Med 23(12):957–963

    Article  PubMed  Google Scholar 

  276. Elsabagh HH, Moussa E, Mahmoud SA, Elsaka RO, Abdelrahman H (2020) Efficacy of melatonin in prevention of radiation-induced oral mucositis: a randomized clinical trial. Oral Dis 26(3):566–572

    Article  PubMed  Google Scholar 

  277. Pourhanifeh MH, Dehdashtian E, Hosseinzadeh A, Sezavar SH, Mehrzadi S (2022) Clinical application of melatonin in the treatment of cardiovascular diseases: current evidence and new insights into the cardioprotective and cardiotherapeutic properties. Cardiovasc Drugs Ther 36(1):131–155

    Article  CAS  PubMed  Google Scholar 

  278. Milani M, Sparavigna A (2018) Antiaging efficacy of melatonin-based day and night creams: a randomized, split-face, assessor-blinded proof-of-concept trial. Clin Cosmet Investig Dermatol 24:51–57

    Article  Google Scholar 

  279. Tagliaferri V, Romualdi D, Scarinci E, Cicco SD, Florio CD, Immediata V, Tropea A, Santarsiero CM et al (2018) Melatonin treatment may be able to restore menstrual cyclicity in women with PCOS: a pilot study. Reprod Sci 25(2):269–275

    Article  CAS  PubMed  Google Scholar 

  280. Lu X, Yu S, Chen G, Zheng W, Peng J, Huang X, Chen L (2021) Insight into the roles of melatonin in bone tissue and bone-related diseases. Int J Mol Med 47(5):1–9

    Article  CAS  Google Scholar 

  281. Shino H, Hasuike A, Arai Y, Honda M, Isokawa K, Sato S (2016) Melatonin enhances vertical bone augmentation in rat calvaria secluded spaces. Medicina Oral Patologia Oral y Cirugia Bucal 21(1):e122

    Article  PubMed  Google Scholar 

  282. Pines A (2016) Circadian rhythm and menopause. Climacteric 19(6):551–552

    Article  CAS  PubMed  Google Scholar 

  283. Gao B, Gao W, Wu Z, Zhou T, Qiu X, Wang X, Lian C, Peng Y et al (2018) Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells. Stem Cell Res Ther 9:1–2

    Article  Google Scholar 

  284. Ghallab NA, Hamdy E, Shaker OG (2016) Malondialdehyde, superoxide dismutase and melatonin levels in gingival crevicular fluid of aggressive and chronic periodontitis patients. Aust Dent J 61(1):53–61

    Article  CAS  PubMed  Google Scholar 

  285. Jamilian M, Foroozanfard F, Mirhosseini N, Kavossian E, Aghadavod E, Bahmani F, Ostadmohammadi V, Kia M et al (2019) Effects of melatonin supplementation on hormonal, inflammatory, genetic, and oxidative stress parameters in women with polycystic ovary syndrome. Front Endocrinol 14(10):273

    Article  Google Scholar 

  286. Guan Q, Wang Z, Cao J, Dong Y, Chen Y (2021) Mechanisms of melatonin in obesity: a review. Int J Mol Sci 23(1):218

    Article  PubMed  PubMed Central  Google Scholar 

  287. Xiao L, Lin J, Chen R, Huang Y, Liu Y, Bai J, Ge G, Shi X et al (2020) Sustained release of melatonin from GelMA liposomes reduced osteoblast apoptosis and improved implant osseointegration in osteoporosis. Oxid Med Cell Longev 28:2020

    Google Scholar 

  288. Li T, Jiang S, Lu C, Yang W, Yang Z, Hu W, Xin Z, Yang Y (2019) Melatonin: another avenue for treating osteoporosis? J Pineal Res 66(2):e12548

    Article  PubMed  Google Scholar 

  289. Mistraletti G, Umbrello M, Sabbatini G, Miori S, Taverna M, Cerri B, Mantovani ES, Formenti P et al (2015) Melatonin reduces the need for sedation in ICU patients: a randomized controlled trial. Minerva Anestesiol 81(12):1298–1310

    CAS  PubMed  Google Scholar 

  290. Oliveira-Abreu K, Cipolla-Neto J, Leal-Cardoso JH (2021) Effects of melatonin on diabetic neuropathy and retinopathy. Int J Mol Sci 23(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  291. Shokri M, Sajedi F, Mohammadi Y, Mehrpooya M (2021) Adjuvant use of melatonin for relieving symptoms of painful diabetic neuropathy: results of a randomized, double-blinded, controlled trial. Eur J Clin Pharmacol 77:1649–1663

    Article  CAS  PubMed  Google Scholar 

  292. Sharma S, Singh H, Ahmad N, Mishra P, Tiwari A (2015) The role of melatonin in diabetes: therapeutic implications. Arch Endocrinol Metab 28(59):391–399

    Article  Google Scholar 

  293. Lewandowska K, Małkiewicz MA, Siemiński M, Cubała WJ, Winklewski PJ, Mędrzycka-Dąbrowska WA (2020) The role of melatonin and melatonin receptor agonist in the prevention of sleep disturbances and delirium in intensive care unit – a clinical review. Sleep Med 1(69):127–134

    Article  Google Scholar 

  294. Lan SH, Lee HZ, Chao CM, Chang SP, Lu LC, Lai CC (2022) Efficacy of melatonin in the treatment of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. J Med Virol 94(5):2102–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Besag FM, Vasey MJ, Lao KS, Wong IC (2019) Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs 33:1167–1186

    Article  PubMed  Google Scholar 

  296. Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Ientile R, Caccamo D (2020) Is melatonin the cornucopia of the 21st century? Antioxidants 9(11):1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Pandi-Perumal SR, Srinivasan V, Poeggeler B, Hardeland R, Cardinali DP (2007) Drug insight: the use of melatonergic agonists for the treatment of insomnia—focus on ramelteon. Nat Clin Pract Neurol 3(4):221–228

    Article  CAS  PubMed  Google Scholar 

  298. McGechan A, Wellington K (2005) Ramelteon. CNS Drugs 19:1057–1065

    Article  CAS  PubMed  Google Scholar 

  299. De Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ (2010) Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discovery 9(8):628–642

    Article  PubMed  Google Scholar 

  300. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306(3):954–964

    Article  CAS  PubMed  Google Scholar 

  301. Hardeland R (2012) Melatonin in aging and disease—multiple consequences of reduced secretion, options and limits of treatment. Aging Dis 3(2):194

    PubMed  Google Scholar 

  302. Mulchahey JJ, Goldwater DR, Zemlan FP (2004) A single blind, placebo controlled, across groups dose escalation study of the safety, tolerability, pharmacokinetics and pharmacodynamics of the melatonin analog β-methyl-6-chloromelatonin. Life Sci 75(15):1843–1856

    Article  CAS  PubMed  Google Scholar 

  303. Costello RB, Lentino CV, Boyd CC, O’Connell ML, Crawford CC, Sprengel ML, Deuster PA (2014) The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr J 13:1–7

    Article  Google Scholar 

  304. Salehi B, Sharopov F, Fokou PV, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM et al (2019) Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells 8(7):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Aguilera Y, Herrera T, Benítez V, Arribas SM, de Pablo AL, Esteban RM, Martín-Cabrejas MA (2015) Estimation of scavenging capacity of melatonin and other antioxidants: contribution and evaluation in germinated seeds. Food Chem 1(170):203–211

    Article  Google Scholar 

  306. Samara MT, Huhn M, Chiocchia V, Schneider-Thoma J, Wiegand M, Salanti G, Leucht S (2020) Efficacy, acceptability, and tolerability of all available treatments for insomnia in the elderly: a systematic review and network meta-analysis. Acta Psychiatr Scand 142(1):6–17

    Article  CAS  PubMed  Google Scholar 

  307. Pigeon WR, Carr M, Gorman C, Perlis ML (2010) Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: a pilot study. J Med Food 13(3):579–583

    Article  PubMed  PubMed Central  Google Scholar 

  308. Kukula-Koch W, Szwajgier D, Gaweł-Bęben K, Strzępek-Gomółka M, Głowniak K, Meissner HO (2021) Is Phytomelatonin complex better than synthetic melatonin? The assessment of the antiradical and anti-inflammatory properties. Molecules 26(19):6087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2001) Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86(10):4727–4730

    Article  CAS  PubMed  Google Scholar 

  310. (2023) Drugs and Lactation Database (LactMed®) [Internet]. National Institute of Child Health and Human Development; Bethesda (MD): Melatonin

  311. Lüdemann P, Zwernemann S, Lerchl A (2001) Clearance of melatonin and 6-sulfatoxymelatonin by hemodialysis in patients with end-stage renal disease. J Pineal Res 31(3):222–227

    Article  PubMed  Google Scholar 

  312. (2020)LiverTox: clinical and research information on drug-induced liver injury [Internet]. National Institute of Diabetes and Digestive and Kidney Diseases; Bethesda (MD)

  313. Therapeutic Research. Melatonin. Available online: https://naturalmedicines.therapeuticresearch.com/. Accessed on 28–11–2023

  314. Zetner D, Andersen LP, Alder R, Jessen ML, Tolstrup A, Rosenberg J (2021) Pharmacokinetics and safety of intravenous, intravesical, rectal, transdermal, and vaginal melatonin in healthy female volunteers: a cross-over study. Pharmacology 106(3–4):169–176

    Article  CAS  PubMed  Google Scholar 

  315. Anghel L, Baroiu L, Popazu CR, Pătraș D, Fotea S, Nechifor A, Ciubara A, Nechita L et al (2022) Benefits and adverse events of melatonin use in the elderly. Exp Ther Med 23(3):1–8

    Article  Google Scholar 

  316. Boivin DB, Boudreau P, Kosmadopoulos A (2022) Disturbance of the circadian system in shift work and its health impact. J Biol Rhythms 37(1):3–28

    Article  CAS  PubMed  Google Scholar 

  317. Boivin DB, Boudreau P (2014) Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris) 62(5):292–301

    Article  CAS  PubMed  Google Scholar 

  318. Deng N, Kohn TP, Lipshultz LI, Pastuszak AW (2018) The relationship between shift work and men’s health. Sex Med Rev 6(3):446–456

    Article  PubMed  Google Scholar 

  319. Pallesen S, Bjorvatn B, Waage S, Harris A, Sagoe D (2021) Prevalence of shift work disorder: a systematic review and meta-analysis. Front Psychol 23(12):638252

    Article  Google Scholar 

  320. Dumont M, Lanctôt V, Cadieux-Viau R, Paquet J (2012) Melatonin production and light exposure of rotating night workers. Chronobiol Int 29(2):203–210

    Article  CAS  PubMed  Google Scholar 

  321. Leung M, Tranmer J, Hung E, Korsiak J, Day AG, Aronson KJ (2016) Shift work, chronotype, and melatonin patterns among female hospital employees on day and night shifts. Cancer Epidemiol Biomark Prev 25(5):830–838

    Article  CAS  Google Scholar 

  322. Kervezee L, Cermakian N, Boivin DB (2019) Individual metabolomic signatures of circadian misalignment during simulated night shifts in humans. PLoS Biol 17(6):e3000303

    Article  PubMed  PubMed Central  Google Scholar 

  323. Bracci M, Manzella N, Copertaro A, Staffolani S, Strafella E, Barbaresi M, Copertaro B, Rapisarda V et al (2014) Rotating-shift nurses after a day off: peripheral clock gene expression, urinary melatonin, and serum 17-β-estradiol levels. Scand J Work Environ Health 1:295–304

    Article  Google Scholar 

  324. Koshy A, Cuesta M, Boudreau P, Cermakian N, Boivin DB (2019) Disruption of central and peripheral circadian clocks in police officers working at night. FASEB J 33(6):6789–6800

    Article  CAS  PubMed  Google Scholar 

  325. Harding BN, Castaño-Vinyals G, Palomar-Cros A, Papantoniou K, Espinosa A, Skene DJ, Middleton B, Gomez-Gomez A et al (2022) Changes in melatonin and sex steroid hormone production among men as a result of rotating night shift work – the HORMONIT study. Scand J Work Environ Health 48(1):41

    Article  CAS  PubMed  Google Scholar 

  326. Reinhardt ÉL, Fernandes PA, Markus RP, Fischer FM (2019) Night work effects on salivary cytokines TNF, IL-1β and IL-6. Chronobiol Int 36(1):11–26

    Article  CAS  PubMed  Google Scholar 

  327. Basler M, Jetter A, Fink D, Seifert B, Kullak-Ublick GA, Trojan A (2014) Urinary excretion of melatonin and association with breast cancer: meta-analysis and review of the literature. Breast Care 9(3):182–187

    Article  PubMed  PubMed Central  Google Scholar 

  328. Stock D, Knight JA, Raboud J, Cotterchio M, Strohmaier S, Willett W, Eliassen AH, Rosner B et al (2019) Rotating night shift work and menopausal age. Hum Reprod 34(3):539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Fagundo-Rivera J, Gómez-Salgado J, García-Iglesias JJ, Gómez-Salgado C, Camacho-Martín S, Ruiz-Frutos C (2020) Relationship between night shifts and risk of breast cancer among nurses: a systematic review. Medicina 56(12):680

    Article  PubMed  PubMed Central  Google Scholar 

  330. Gustavsen S, Søndergaard HB, Oturai DB, Laursen B, Laursen JH, Magyari M, Ullum H, Larsen MH et al (2016) Shift work at young age is associated with increased risk of multiple sclerosis in a Danish population. Multiple Sclerosis and Related Disorders 1(9):104–109

    Article  Google Scholar 

  331. Hunter CM, Figueiro MG (2017) Measuring light at night and melatonin levels in shift workers: a review of the literature. Biol Res Nurs 19(4):365–374

    Article  CAS  PubMed  Google Scholar 

  332. Lam C, Chung MH (2021) Dose–response effects of light therapy on sleepiness and circadian phase shift in shift workers: a meta-analysis and moderator analysis. Sci Rep 11(1):11976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Sadeghniiat-Haghighi K, Bahrami H, Aminian O, Meysami A, Khajeh-Mehrizi A (2016) Melatonin therapy in shift workers with difficulty falling asleep: a randomized, double-blind, placebo-controlled crossover field study. Work 55(1):225–230

    Article  PubMed  Google Scholar 

  334. Rajaratnam SM, Howard ME, Grunstein RR (2013) Sleep loss and circadian disruption in shift work: health burden and management. Med J Aust 199:S11–S15

    Article  PubMed  Google Scholar 

  335. Nagashima S, Osawa M, Matsuyama H, Ohoka W, Ahn A, Wakamura T (2018) Bright-light exposure during daytime sleeping affects nocturnal melatonin secretion after simulated night work. Chronobiol Int 35(2):229–239

    Article  CAS  PubMed  Google Scholar 

  336. Liira J, Verbeek J, Ruotsalainen J (2015) Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. JAMA 313(9):961–962

    Article  CAS  PubMed  Google Scholar 

  337. Forthun I, Waage S, Pallesen S, Moen BE, Bjorvatn B (2022) A shift to something better? A longitudinal study of work schedule and prescribed sleep medication use in nurses. Occup Environ Med 79(11):752–757

    Article  PubMed  Google Scholar 

  338. Thottakam BM, Webster NR, Allen L, Columb MO, Galley HF (2020) Melatonin is a feasible, safe, and acceptable intervention in doctors and nurses working nightshifts: the MIDNIGHT trial. Front Psych 27(11):872

    Article  Google Scholar 

  339. Kazemi R, Motamedzade M, Golmohammadi R, Mokarami H, Hemmatjo R, Heidarimoghadam R (2018) Field study of effects of night shifts on cognitive performance, salivary melatonin, and sleep. Saf Health Work 9(2):203–209

    Article  PubMed  Google Scholar 

  340. Razavi P, Devore EE, Bajaj A, Lockley SW, Figueiro MG, Ricchiuti V, Gauderman WJ, Hankinson SE et al (2019) Shift work, chronotype, and melatonin rhythm in nurses. Cancer Epidemiol Biomark Prev 28(7):1177–1186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PVM thanks the Director and Head, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Trivandrum, Kerala, India, for their support and for providing the infrastructure to carry out this work. KBM thanks SERB, New Delhi, for National Postdoctoral Fellowship. AR and SS thank CSIR-IMTECH, Chandigarh, for the support to carry out this work. RP thanks the Kerala University for the support to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

K. B. Megha, A. Arathi, R. Alka, S. Shikha and P. Ramya: investigation, methodology, formal analysis, resources, data collection, writing of original draft and editing. P. V. Mohanan: conceptualization, supervision, data analysis, final correction, editing and approval.

Corresponding author

Correspondence to P. V. Mohanan.

Ethics declarations

Ethical Approval and Consent to Participate

This is a review article. Appropriate approval/ethical approval is already taken. Consent part from the subject is not applicable for this review article.

Consent for Publication

All the authors agreed to submit the manuscript in the journal. The same has approved by the parent institute.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. B. Megha, A. Arathi, Saini Shikha, Rao Alka and Prabhu Ramya share equal authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megha, K.B., Arathi, A., Shikha, S. et al. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03915-0

Keywords

Navigation