Skip to main content
Log in

Deciphering the Biophysical Properties of Ion Channel Gating Pores by Coumarin–Benzodiazepine Hybrid Derivatives: Selective AMPA Receptor Antagonists

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the 1980s, the identification of specific pharmacological antagonists played a crucial role in enhancing our comprehension of the physiological mechanisms associated with α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs). The primary objective of this investigation was to identify specific AMPA receptor antagonists, namely 2,3-benzodiazepines, that function as negative allosteric modulators (NAMs) at distinct locations apart from the glutamate recognition site. These compounds have exhibited a diverse array of anticonvulsant properties. In order to conduct a more comprehensive investigation, the study utilized whole-cell patch-clamp electrophysiology to analyze the inhibitory effect and selectivity of benzodiazepine derivatives that incorporate coumarin rings in relation to AMPA receptors. The study’s main objective was to acquire knowledge about the relationship between the structure and activity of the compound and comprehend the potential effects of altering the side chains on negative allosteric modulation. The investigation provided crucial insights into the interaction between eight CD compounds and AMPA receptor subunits. Although all compounds demonstrated effective blockade, CD8 demonstrated the greatest potency and selectivity towards AMPA receptor subunits. The deactivation and desensitization rates were significantly influenced by CD8, CD6, and CD5, distinguishing them from the remaining five chemicals. The differences in binding and inhibition of AMPA receptor subunits can be attributed to structural discrepancies among the compounds. The carboxyl group of CD8, situated at the para position of the phenyl ring, substantially influenced the augmentation of AMPA receptor affinity. The findings of this study highlight the potential of pharmaceutical compounds that specifically target AMPA receptors to facilitate negative allosteric modulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data collected or analyzed in this investigation are included in this manuscript and its supplemental material file.

Abbreviations

CD:

coumarin-benzodiazepine hybrid compounds

iGluRs:

ionotropic glutamate receptors

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

NMDA:

N-methyl-D-aspartate

HEK293:

human embryonic kidney 293 cells

AMPARs:

AMPA receptors

CNS:

central nervous system

NTD:

N-terminal extracellular amino domain

LBD:

ligand binding domain

TMD:

transmembrane domain

LTP:

long-term potentiation

LTD:

long-term depression

NAM:

negative allosteric modulator

PAM:

positive allosteric modulator

GFP:

green fluorescent protein

DMF:

N, N-dimethylformamide

ANOVA:

a one-way analysis of variance

References

  1. Coombs ID, Cull-Candy SG (2021) Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 198:108781

    Article  PubMed  CAS  Google Scholar 

  2. Greger IH, Watson JF, Cull-candy SG (2017) structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4):713–730

    Article  PubMed  CAS  Google Scholar 

  3. Nakagawa T et al (2005) Structure and different conformational states of native AMPA receptor complexes. Nature 433(7025):545–549

    Article  PubMed  CAS  Google Scholar 

  4. Chen S, Gouaux E (2019) Structure and mechanism of AMPA receptor - auxiliary protein complexes. Curr Opin Struct Biol 54:104–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100(2):314–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sprengel R (2006) Role of AMPA receptors in synaptic plasticity. Cell Tissue Res 326(2):447–455

    Article  PubMed  CAS  Google Scholar 

  7. Zhao Y et al (2019) Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364(6438):355–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Henley JM, Wilkinson KA (2016) Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 17(6):337–350

    Article  PubMed  CAS  Google Scholar 

  9. Salpietro V et al (2019) AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun 10(1):3094

    Article  PubMed  PubMed Central  Google Scholar 

  10. Henley JM et al (2021) Kainate and AMPA receptors in epilepsy: cell biology, signalling pathways and possible crosstalk. Neuropharmacology 195:108569

    Article  PubMed  CAS  Google Scholar 

  11. Wright A, Vissel B (2012) The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 5:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cull-Candy SG, Farrant M (2021) Ca2+-permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. Physiol J 599(10):2655–2671

    Article  CAS  Google Scholar 

  13. Rogawski MAJANS (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand 127:9–18

    Article  CAS  Google Scholar 

  14. Anwar H et al (2020) Epileptic seizures. Discoveries (Craiova) 8(2):e110

    Article  PubMed  Google Scholar 

  15. Balannik V et al (2005) Molecular mechanism of AMPA receptor non-competitive antagonism. Neuron 48(2):279–288

    Article  PubMed  CAS  Google Scholar 

  16. Vizi ES, Mike A, Tarnawa I (1996) 2,3-Benzodiazepines (GYKI 52466 and Analogs): negative allosteric modulators of AMPA receptors. CNS Drug Rev 2(1):91–126

    Article  CAS  Google Scholar 

  17. Howes JF, Bell C (2007) Talampanel. Neurotherapeutics 4(1):126–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Langan YM et al (2003) Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 44(1):46–53

    Article  PubMed  CAS  Google Scholar 

  19. Satlin A, Kramer LD, Laurenza A (2013) Development of perampanel in epilepsy. Acta Neurol Scand Suppl 197:3–8

    Article  Google Scholar 

  20. Franco V et al (2013) Novel treatment options for epilepsy: focus on perampanel. Pharmacol Res 70(1):35–40

    Article  PubMed  CAS  Google Scholar 

  21. Trinka E et al (2016) Perampanel for focal epilepsy: insights from early clinical experience. Acta Neurol Scand 133(3):160–172

    Article  PubMed  CAS  Google Scholar 

  22. Jaradat N et al (2022) The effect of novel negative allosteric 2,3-benzodiazepine on glutamate AMPA receptor and their cytotoxicity. J Mol Struct 1261:132936

    Article  CAS  Google Scholar 

  23. Qneibi M et al (2020) Ortho versus meta chlorophenyl-2,3-benzodiazepine analogues: synthesis, molecular modeling, and biological activity as AMPAR antagonists. ACS Omega 5(7):3588–3595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Qneibi M et al (2022) Affecting AMPA receptor biophysical gating properties with negative allosteric modulators. Mol Neurobiol 59(9):5264–5275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Qneibi M et al (2022) α-Lipoic acid derivatives as allosteric modulators for targeting AMPA-type glutamate receptors’ gating modules. Cells 11(22):3608

  26. Yuan CL et al (2019) Modulation of AMPA receptor gating by the anticonvulsant drug, perampanel. ACS Med Chem Lett 10(3):237–242

    Article  PubMed  CAS  Google Scholar 

  27. Augustin K et al (2018) Perampanel and decanoic acid show synergistic action against AMPA receptors and seizures. Epilepsia 59(11):e172–e178

    Article  PubMed  CAS  Google Scholar 

  28. Taniguchi S, Stolz JR, Swanson GT (2022) The antiseizure drug perampanel is a subunit-selective negative allosteric modulator of kainate receptors. J Neurosci 42(28):5499–5509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stenum-Berg C et al (2019) Mutational analysis and modeling of negative allosteric modulator binding sites in AMPA receptors. Mol Pharmacol 96(6):835–850

    Article  PubMed  CAS  Google Scholar 

  30. Menniti FS et al (2000) characterization of the binding site for a novel class of non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonists. Mol Pharmacol 58(6):1310–1317

    Article  PubMed  CAS  Google Scholar 

  31. Sólyom S, Tarnawa I (2002) Non-competitive AMPA antagonists of 2, 3-benzodiazepine type. Curr Pharm Des 8(10):913–939

    Article  PubMed  Google Scholar 

  32. Mittapalli GK, Roberts E (2014) Structure activity relationships of novel antiepileptic drugs. Curr Med Chem 21(6):722–754

    Article  PubMed  CAS  Google Scholar 

  33. Qneibi M et al (2021) The AMPA receptor biophysical gating properties and binding site: focus on novel curcumin-based diazepines as non-competitive antagonists. Bioorg Chem 116:105406

    Article  PubMed  CAS  Google Scholar 

  34. Gümüş M (2021) Synthesis and characterization of novel hybrid compounds containing coumarin and benzodiazepine rings based on dye. J Heterocycl Chem 58(10):1943–1954

    Article  Google Scholar 

  35. Qneibi M et al (2019) inhibition and assessment of the biophysical gating properties of GluA2 and GluA2/A3 AMPA receptors using curcumin derivatives. Plos one 14(8):e0221132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Qneibi M et al (2019) The inhibitory role of curcumin derivatives on AMPA receptor subunits and their effect on the gating biophysical properties. Eur J Pharm Sci 136:104951

    Article  PubMed  CAS  Google Scholar 

  37. Li G, Pei W, Niu L (2003) Channel-opening kinetics of GluR2Q(flip) AMPA receptor: a laser-pulse photolysis study. Biochemistry 42(42):12358–12366

    Article  PubMed  CAS  Google Scholar 

  38. Huang Z et al (2010) Potent and selective inhibition of the open-channel conformation of AMPA receptors by an RNA aptamer. Biochemistry 49(27):5790–5798

    Article  PubMed  CAS  Google Scholar 

  39. Emnett CM et al (2013) Indistinguishable synaptic pharmacodynamics of the N-methyl-D-aspartate receptor channel blockers memantine and ketamine. Mol Pharmacol 84(6):935–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jaradat N et al (2022) Assessing Artemisia arborescens essential oil compositions, antimicrobial, cytotoxic, anti-inflammatory, and neuroprotective effects gathered from two geographic locations in Palestine. Ind Crops Prod 176:114360

    Article  CAS  Google Scholar 

  41. Qneibi M, Jaradat N, Emwas N (2019) Effect of geraniol and citronellol essential oils on the biophysical gating properties of AMPA receptors. Appl Sci 9(21):4693

    Article  CAS  Google Scholar 

  42. Qneibi M et al (2022) Targeting the kinetics mechanism of AMPA receptor inhibition by 2-oxo-3H-benzoxazole derivatives. Bioorg Chem 129:106163

    Article  PubMed  CAS  Google Scholar 

  43. Narangoda C, Sakipov SN, Kurnikova MG (2019) AMPA receptor non-competitive inhibitors occupy a promiscuous binding site. ACS Chem Neurosci 10(11):4511–4521

    Article  PubMed  CAS  Google Scholar 

  44. Krintel C et al (2021) binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2. Febs J 288(3):995–1007

    Article  PubMed  CAS  Google Scholar 

  45. Szymańska E et al (2017) Pharmacological characterization and binding modes of novel racemic and optically active phenylalanine-based antagonists of AMPA receptors. Eur J Med Chem 138:874–883

    Article  PubMed  Google Scholar 

  46. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28(1):165–181

    Article  PubMed  CAS  Google Scholar 

  47. Yelshanskaya MV et al (2016) Structural bases of non-competitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron 91(6):1305–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bleakman D et al (1996) activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 35(12):1689–1702

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to An-Najah National University (www.najah.edu) for its support in this research.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Qneibi: conceptualization, methodology, validation, investigation, writing—original draft, manuscript drafting, data curation, and project. Mohammed Hawash: validation, data curation, and manuscript drafting. Mehmet Gümüş: synthesis. İrfan Çapan: validation. Yusuf Sert: validation. Sosana Bdir: validation and manuscript drafting. İrfan Koca: Synthesis and manuscript drafting. Mohammad Bdair: manuscript drafting.

Corresponding author

Correspondence to Mohammad Qneibi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors have given their consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qneibi, M., Hawash, M., Gümüş, M. et al. Deciphering the Biophysical Properties of Ion Channel Gating Pores by Coumarin–Benzodiazepine Hybrid Derivatives: Selective AMPA Receptor Antagonists. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03871-1

Keywords

Navigation