Skip to main content
Log in

COVID-19, Anxiety, and Body Mass Index Increase Leptin Levels: a Cross-sectional Multicentric Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although many efforts have been made to understand the pathophysiological mechanisms of COVID-19, critical gaps remain to be explored. This study aimed to investigate potential alterations in adipokine levels (specifically adiponectin, leptin, and resistin) among individuals with COVID-19. Within this population, we further assessed the association between these markers with both, body mass index (BMI) and psychiatric symptoms. This cross-sectional study included an age- and sex-matched sample of adults with COVID-19 (cases) and without COVID-19 (controls). We evaluated the severity of psychiatric symptoms, BMI, and adipokines. Individuals with COVID-19 presented greater BMI, stress levels, and leptin levels when compared to controls. Leptin levels were greater in individuals with moderate/severe COVID-19 as compared to individuals with COVID-19 who were asymptomatic or having mild symptoms. Leptin levels were positively correlated with BMI, severity of depressive and anxiety symptoms, and stress levels in the total sample. Leptin levels were also positively correlated with BMI, severity of anxiety symptoms, and stress levels in controls. In cases, there was a positive correlation between adiponectin and the severity of depressive symptoms and stress levels and leptin/resistin with BMI. A linear regression model revealed that BMI, severity of anxiety symptoms, and the diagnosis of COVID-19 are independently associated with increased leptin levels. Thus, leptin levels seem to be impacted by the COVID-19 infection, anxiety, and BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. World Heath Organization (2020) WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf

  2. World Heath Organization (2020) Transmission of SARS-CoV-2: implications for infection prevention precautions. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf

  3. Sadoff J, Gray G, Vandebosch A et al (2021) Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med 384:2187–2201. https://doi.org/10.1056/NEJMoa2101544

    Article  CAS  PubMed  Google Scholar 

  4. Voysey M, Clemens SAC, Madhi SA et al (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet 397:99–111. https://doi.org/10.1016/S0140-6736(20)32661-1

    Article  CAS  Google Scholar 

  5. Johnson KD, Harris C, Cain JK et al (2020) Pulmonary and extra-pulmonary clinical manifestations of COVID-19. Front Med 7. https://doi.org/10.3389/fmed.2020.00526 (Lausanne)

  6. Bauer AE, Guintivano J, Krohn H et al (2022) The longitudinal effects of stress and fear on psychiatric symptoms in mothers during the COVID-19 pandemic. Arch Womens Ment Health 25:1067–1078. https://doi.org/10.1007/s00737-022-01265-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iadecola C, Anrather J, Kamel H (2020) Effects of COVID-19 on the nervous system. Cell 183:16-27.e1. https://doi.org/10.1016/j.cell.2020.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Douaud G, Lee S, Alfaro-Almagro F et al (2022) SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604:697–707. https://doi.org/10.1038/s41586-022-04569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pelaia C, Tinello C, Vatrella A et al (2020) Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther Adv Respir Dis 14:175346662093350. https://doi.org/10.1177/1753466620933508

    Article  CAS  Google Scholar 

  10. Ragab D, Salah Eldin H, Taeimah M et al (2020) The COVID-19 cytokine storm; what we know so far. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.01446

  11. de Azevedo CT, Silva RH, Fernandes JL et al (2023) Stress levels, psychological symptoms, and C-reactive protein levels in COVID-19: a cross-sectional study. J Affect Disord 330:216–226. https://doi.org/10.1016/j.jad.2023.03.019

    Article  CAS  Google Scholar 

  12. Mazza MG, De Lorenzo R, Conte C et al (2020) Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun 89:594–600. https://doi.org/10.1016/j.bbi.2020.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Damiano RF, Caruso MJG, Cincoto AV et al (2022) Post-COVID-19 psychiatric and cognitive morbidity: preliminary findings from a Brazilian cohort study. Gen Hosp Psychiatry 75:38–45. https://doi.org/10.1016/j.genhosppsych.2022.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carlessi AS, Borba LA, Zugno AI et al (2021) Gut microbiota–brain axis in depression: the role of neuroinflammation. Eur J Neurosci 53:222–235. https://doi.org/10.1111/ejn.14631

    Article  CAS  PubMed  Google Scholar 

  15. Wensveen FM, Valentić S, Šestan M et al (2015) Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol 27:322–333. https://doi.org/10.1016/j.smim.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  16. Ge T, Fan J, Yang W et al (2018) Leptin in depression: a potential therapeutic target. Cell Death Dis 9:1096. https://doi.org/10.1038/s41419-018-1129-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weber-Hamann B, Kratzsch J, Kopf D et al (2007) Resistin and adiponectin in major depression: the association with free cortisol and effects of antidepressant treatment. J Psychiatr Res 41:344–350. https://doi.org/10.1016/j.jpsychires.2006.01.002

    Article  PubMed  Google Scholar 

  18. Flikweert AW, Kobold ACM, van der Sar-van der Brugge S et al (2023) Circulating adipokine levels and COVID-19 severity in hospitalized patients. Int J Obes 47:126–137.https://doi.org/10.1038/s41366-022-01246-5

  19. Perrotta F, Scialò F, Mallardo M et al (2023) Adiponectin, leptin, and resistin are dysregulated in patients infected by SARS-CoV-2. Int J Mol Sci 24:1131. https://doi.org/10.3390/ijms24021131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Nooijer AH, Kooistra EJ, Grondman I et al (2023) Adipocytokine plasma concentrations reflect influence of inflammation but not body mass index (BMI) on clinical outcomes of COVID-19 patients: a prospective observational study from the Netherlands. Clin Obes 13. https://doi.org/10.1111/cob.12568

  21. Tonon F, Di Bella S, Giudici F et al (2022) Discriminatory value of adiponectin to leptin ratio for COVID-19 pneumonia. Int J Endocrinol 2022:1–9. https://doi.org/10.1155/2022/9908450

    Article  CAS  Google Scholar 

  22. Yuan B, Li W, Liu H et al (2020) Correlation between immune response and self-reported depression during convalescence from COVID-19. Brain Behav Immun 88:39–43. https://doi.org/10.1016/j.bbi.2020.05.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Assis GG, Murawska-Ciałowicz E (2021) Leptin—a potential bridge between fat metabolism and the brain’s vulnerability to neuropsychiatric disorders: a systematic review. J Clin Med 10:5714. https://doi.org/10.3390/jcm10235714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 6:278–296. https://doi.org/10.1111/j.2044-8260.1967.tb00530.x

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55. https://doi.org/10.1111/j.2044-8341.1959.tb00467.x

    Article  CAS  PubMed  Google Scholar 

  26. Derogatis LR (1994) Symptom Checklist-90-R: administration, scoring & procedure manual for the revised version of the SCL-90. National Computer Systems, Minneapolis

    Google Scholar 

  27. Bertollo AG, Grolli RE, Plissari ME et al (2020) Stress and serum cortisol levels in major depressive disorder: a cross-sectional study. AIMS Neurosci 7:459–469. https://doi.org/10.3934/Neuroscience.2020028

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marilda Lipp, de Hoyos Guevara Arnoldo J (1994) Validação empírica do Inventário de Sintomas de Stress (ISS). EstudPsicol 3:43–49

  29. Földi M, Farkas N, Kiss S et al (2021) Visceral adiposity elevates the risk of critical condition in COVID-19: a systematic review and meta-analysis. Obesity 29:521–528. https://doi.org/10.1002/oby.23096

    Article  CAS  PubMed  Google Scholar 

  30. Liang H, Ernst T, Oishi K et al (2023) Abnormal brain diffusivity in participants with persistent neuropsychiatric symptoms after COVID-19. NeuroImmune Pharmacol Ther. https://doi.org/10.1515/nipt-2022-0016

    Article  Google Scholar 

  31. de Heredia FP, Gómez-Martínez S, Marcos A (2012) Obesity, inflammation and the immune system. Proc Nutr Soc 71:332–338. https://doi.org/10.1017/S0029665112000092

    Article  CAS  PubMed  Google Scholar 

  32. Kearns SM, Ahern KW, Patrie JT et al (2021) Reduced adiponectin levels in patients with COVID‐19 acute respiratory failure: a case‐control study. Physiol Rep 9. https://doi.org/10.14814/phy2.14843

  33. Di Filippo L, De Lorenzo R, Sciorati C et al (2021) Adiponectin to leptin ratio reflects inflammatory burden and survival in COVID-19. Diabetes Metab 47:101268. https://doi.org/10.1016/j.diabet.2021.101268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blot M, Masson D, Nguyen M et al (2021) Are adipokines the missing link between obesity, immune response, and outcomes in severe COVID-19? Int J Obes 45:2126–2131. https://doi.org/10.1038/s41366-021-00868-5

    Article  CAS  Google Scholar 

  35. Scott SR, Millwood SN, Manczak EM (2023) Adipocytokine correlates of childhood and adolescent mental health: a systematic review. Dev Psychobiol 65. https://doi.org/10.1002/dev.22379

  36. Rizzo MR, Fasano R, Paolisso G (2020) Adiponectin and cognitive decline. Int J Mol Sci 21:2010. https://doi.org/10.3390/ijms21062010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu N, Wang Q-P, Li H et al (2010) Relationships between serum adiponectin, leptin concentrations and bone mineral density, and bone biochemical markers in Chinese women. Clin Chim Acta 411:771–775. https://doi.org/10.1016/j.cca.2010.02.064

    Article  CAS  PubMed  Google Scholar 

  38. Rosická M, Krsek M, Matoulek M et al (2003) Serum ghrelin levels in obese patients: the relationship to serum leptin levels and soluble leptin receptors levels. Physiol Res 52:61–66

    Article  PubMed  Google Scholar 

  39. Taylor VH, MacQueen GM (2010) The role of adipokines in understanding the associations between obesity and depression. J Obes 2010:1–6. https://doi.org/10.1155/2010/748048

    Article  Google Scholar 

  40. Erichsen JM, Fadel JR, Reagan LP (2022) Peripheral versus central insulin and leptin resistance: role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 203:108877. https://doi.org/10.1016/j.neuropharm.2021.108877

    Article  CAS  PubMed  Google Scholar 

  41. Kienast C, Biere K, Coker RH et al (2022) Adiponectin, leptin, cortisol, neuropeptide Y and profile of mood states in athletes participating in an ultramarathon during winter: an observational study. Front Physiol 13. https://doi.org/10.3389/fphys.2022.970016

  42. He K, Nie L, Ali T et al (2023) Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun Ageing 20:15. https://doi.org/10.1186/s12979-023-00339-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Everson-Rose SA, Clark CJ, Wang Q et al (2018) Depressive symptoms and adipokines in women: study of women’s health across the nation. Psychoneuroendocrinology 97:20–27. https://doi.org/10.1016/j.psyneuen.2018.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Archer M, Niemelä O, Hämäläinen M et al (2018) The effects of adiposity and alcohol use disorder on adipokines and biomarkers of inflammation in depressed patients. Psychiatry Res 264:31–38. https://doi.org/10.1016/j.psychres.2018.03.073

    Article  PubMed  Google Scholar 

  45. Bekhbat M, Chu K, Le N-A et al (2018) Glucose and lipid-related biomarkers and the antidepressant response to infliximab in patients with treatment-resistant depression. Psychoneuroendocrinology 98:222–229. https://doi.org/10.1016/j.psyneuen.2018.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Manosso LM, Arent CO, Borba LA et al (2021) Microbiota-gut-brain communication in the SARS-CoV-2 infection. Cells 10:1993. https://doi.org/10.3390/cells10081993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Réus GZ, de Moura AB, Silva RH et al (2018) Resilience dysregulation in major depressive disorder: focus on glutamatergic imbalance and microglial activation. Curr Neuropharmacol 16:297–307. https://doi.org/10.2174/1570159X15666170630164715

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the people who participated in this study. Our research team, for their help in recruiting the patients. The whole UNESC and Federal University of the Southern Frontier, including interviewers, research scientists, volunteers, managers, receptionists, and drivers. GZR is a 2 CNPq Research Fellow.

Funding

This research was supported by grants from CNPq (GZR) “MCTIC/CNPq/FNDCT/MS/SCTIE/Decit No 07/2020,” FAPESC (GZR), and UNESC (GZR, JQ, and LBC).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GZR, ZMI, JQ, TAC, and LBC. Formal analysis: TCA. Funding acquisition: GZR. Investigation and methodology: KCCR, KMSHM, RHS, COA, GA, FSN, LCP, LAB, MDB, GGO, APS, MEDM, FFG, FP. Project administration: GZR and ZMI. Resources: GZR, LBC, and JQ. Supervision: GZR. Roles/writing—original draft: TAC and GZR. Writing—review and editing: GZR and TAC.

Corresponding author

Correspondence to Gislaine Z. Réus.

Ethics declarations

Ethics Approval

This study was approved by the ethics committee under protocol numbers 4.172.382 and 4.298.662.

Consent to Participate

All participants signed an informed consent form before participating in the study.

Consent for Publication

Not applicable.

Competing Interests

Dr. de Azevedo Cardoso is a scientific editor at JMIR Publications. Other authors report no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Réus, G.Z., Recco, K.C.C., Machado, K.M.S.H. et al. COVID-19, Anxiety, and Body Mass Index Increase Leptin Levels: a Cross-sectional Multicentric Study. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03788-9

Keywords

Navigation