Skip to main content
Log in

Glucocorticoid Receptor Down-Regulation Affects Neural Stem Cell Proliferation and Hippocampal Neurogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dysregulation of the hypothalamic–pituitary–adrenal axis and abnormalities in the glucocorticoid receptor (GR) have been linked to major depressive disorder. Given the critical role of GR in stress response regulation, we investigated the impact of GR changes on neural stem cells (NSCs) proliferation and hippocampal neurogenesis. Stress response was induced using dexamethasone (DEX), a GR agonist, which led to reduced proliferation of neural stem cells and neural progenitor cells, as well as decreased expression of GR. Additionally, a reduction of serum concentration within the culture media resulted in suppressed cell proliferation, accompanied by decreased GR expression. The association between GR expression and cell proliferation was further confirmed through GR siRNA knockdown and overexpression experiments. Furthermore, in vivo studies utilizing young male C57BL/6 mice demonstrated that corticosterone (CORT) (35 μg/ml) administered through drinking water for four weeks induced depression-like behavior, as indicated by increased immobility times in forced swimming and tail suspension tests. CORT exposure led to reduced GR and nestin expression levels, along with diminished numbers of BrdU-positive cells in the hippocampi, indicating impaired hippocampal neurogenesis. Taken together, our findings provide the first evidence that stress-induced downregulation of GR negatively affects neurogenesis by inhibiting NSCs proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Organization WH (2023) Depressive disorder (depression). https://www.who.int/news-room/fact-sheets/detail/depression. Accessed 31 Mar 2023

  2. Salari N, Hosseinian-Far A, Jalali R, Vaisi-Raygani A, Rasoulpoor S, Mohammadi M, Rasoulpoor S, Khaledi-Paveh B (2020) Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health 16(1):57. https://doi.org/10.1186/s12992-020-00589-w

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kunugi H, Ida I, Owashi T, Kimura M, Inoue Y, Nakagawa S, Yabana T, Urushibara T et al (2006) Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a Multicenter Study. Neuropsychopharmacology 31(1):212–220. https://doi.org/10.1038/sj.npp.1300868

    Article  PubMed  CAS  Google Scholar 

  4. Menard C, Pfau ML, Hodes GE, Russo SJ (2017) Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42(1):62–80. https://doi.org/10.1038/npp.2016.90

    Article  PubMed  CAS  Google Scholar 

  5. de Guia RM (2020) Stress, glucocorticoid signaling pathway, and metabolic disorders. Diabetes Metab Syndr 14(5):1273–1280. https://doi.org/10.1016/j.dsx.2020.06.038

    Article  PubMed  Google Scholar 

  6. Pariante CM (2004) Glucocorticoid receptor function in vitro in patients with major depression. Stress 7(4):209–219. https://doi.org/10.1080/10253890500069650

    Article  PubMed  CAS  Google Scholar 

  7. Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83(1–5):37–48. https://doi.org/10.1016/s0960-0760(02)00263-7

    Article  PubMed  CAS  Google Scholar 

  8. Hasan KM, Rahman MS, Arif KM, Sobhani ME (2012) Psychological stress and aging: role of glucocorticoids (GCs). Age (Dordr) 34(6):1421–1433. https://doi.org/10.1007/s11357-011-9319-0

    Article  PubMed  CAS  Google Scholar 

  9. Sapolsky RM (1999) Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol 34(6):721–732. https://doi.org/10.1016/s0531-5565(99)00047-9

    Article  PubMed  CAS  Google Scholar 

  10. Radley J, Morilak D, Viau V, Campeau S (2015) Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 58:79–91. https://doi.org/10.1016/j.neubiorev.2015.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sundberg M, Savola S, Hienola A, Korhonen L, Lindholm D (2006) Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1. J Neurosci 26(20):5402–5410. https://doi.org/10.1523/JNEUROSCI.4906-05.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y, Muglia LJ (2005) Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci U S A 102(2):473–478. https://doi.org/10.1073/pnas.0406458102

    Article  PubMed  CAS  Google Scholar 

  13. Camargo A, Dalmagro AP, Rosa JM, Zeni ALB, Kaster MP, Tasca CI, Rodrigues ALS (2020) Subthreshold doses of guanosine plus ketamine elicit antidepressant-like effect in a mouse model of depression induced by corticosterone: Role of GR/NF-kappaB/IDO-1 signaling. Neurochem Int 139:104797. https://doi.org/10.1016/j.neuint.2020.104797

    Article  PubMed  CAS  Google Scholar 

  14. Calfa G, Kademian S, Ceschin D, Vega G, Rabinovich GA, Volosin M (2003) Characterization and functional significance of glucocorticoid receptors in patients with major depression: modulation by antidepressant treatment. Psychoneuroendocrinology 28(5):687–701. https://doi.org/10.1016/s0306-4530(02)00051-3

    Article  PubMed  CAS  Google Scholar 

  15. Park SC (2019) Neurogenesis and antidepressant action. Cell Tissue Res 377(1):95–106. https://doi.org/10.1007/s00441-019-03043-5

    Article  PubMed  Google Scholar 

  16. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  17. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult. J Neurosci 20(24):9104–9110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim EJ, Pellman B, Kim JJ (2015) Stress effects on the hippocampus; a critical review. Learn Mem 22(9):411–416. https://doi.org/10.1101/lm.037291

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leschik J, Lutz B, Gentile A (2021) Stress-related dysfunction of adult hippocampal neurogenesis-an attempt for understanding resilience? Int J Mol Sci 22(14):7339. https://doi.org/10.3390/ijms22147339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64(4):293–301. https://doi.org/10.1016/j.biopsych.2008.02.022

    Article  PubMed  CAS  Google Scholar 

  21. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728. https://doi.org/10.1038/sj.mp.4002055

    Article  PubMed  CAS  Google Scholar 

  22. Van Bokhoven P, Oomen CA, Hoogendijk WJ, Smit AB, Lucassen PJ, Spijker S (2011) Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur J Neurosci 33(10):1833–1840. https://doi.org/10.1111/j.1460-9568.2011.07668.x

    Article  PubMed  Google Scholar 

  23. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68(1):33–51. https://doi.org/10.1016/0092-8674(92)90204-p

    Article  PubMed  CAS  Google Scholar 

  24. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493. https://doi.org/10.1016/j.neuron.2009.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cassano AE, White JR, Penraat KA, Wilson CD, Rasmussen S, Karatsoreos IN (2012) Anatomic, hematologic, and biochemical features of C57BL6NCrl mice maintained on chronic oral corticosterone. Comp Med 62(5):348–360

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Gasparini SJ, Weber MC, Henneicke H, Kim S, Zhou H, Seibel MJ (2016) Continuous corticosterone delivery via the drinking water or pellet implantation: A comparative study in mice. Steroids 116:76–82. https://doi.org/10.1016/j.steroids.2016.10.008

    Article  PubMed  CAS  Google Scholar 

  27. Kinlein SA, Phillips DJ, Keller CR, Karatsoreos IN (2019) Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology 102:248–255. https://doi.org/10.1016/j.psyneuen.2018.12.010

    Article  PubMed  CAS  Google Scholar 

  28. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J Vis Exp 97:52587. https://doi.org/10.3791/52587

    Article  Google Scholar 

  29. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012) The tail suspension test. J Vis Exp 59:e3769. https://doi.org/10.3791/3769

    Article  Google Scholar 

  30. Rosa PB, Ribeiro CM, Bettio LE, Colla A, Lieberknecht V, Moretti M, Rodrigues AL (2014) Folic acid prevents depressive-like behavior induced by chronic corticosterone treatment in mice. Pharmacol Biochem Behav 127:1–6. https://doi.org/10.1016/j.pbb.2014.10.003

    Article  PubMed  CAS  Google Scholar 

  31. Murata K, Fujita N, Takahashi R, Inui A (2018) Ninjinyoeito improves behavioral abnormalities and hippocampal neurogenesis in the corticosterone model of depression. Front Pharmacol 9:1216. https://doi.org/10.3389/fphar.2018.01216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H et al (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25(26):6243–6250. https://doi.org/10.1523/JNEUROSCI.0736-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39(1):112–119. https://doi.org/10.1016/j.pnpbp.2012.05.018

    Article  PubMed  CAS  Google Scholar 

  34. Pan-Vazquez A, Rye N, Ameri M, McSparron B, Smallwood G, Bickerdyke J, Rathbone A, Dajas-Bailador F et al (2015) Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Mol Brain 8:40. https://doi.org/10.1186/s13041-015-0128-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS et al (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45(5):357–365. https://doi.org/10.1016/j.exger.2010.02.005

    Article  PubMed  Google Scholar 

  36. van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kronenberg G, Kirste I, Inta D, Chourbaji S, Heuser I, Endres M, Gass P (2009) Reduced hippocampal neurogenesis in the GR(+/-) genetic mouse model of depression. Eur Arch Psychiatry Clin Neurosci 259(8):499–504. https://doi.org/10.1007/s00406-009-0036-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Belovicova K, Bogi E, Csatlosova K, Dubovicky M (2017) Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip Toxicol 10(1):40–43. https://doi.org/10.1515/intox-2017-0006

    Article  PubMed  Google Scholar 

  39. Sawamoto A, Okuyama S, Yamamoto K, Amakura Y, Yoshimura M, Nakajima M, Furukawa Y (2016) 3,5,6,7,8,3’,4’-Heptamethoxyflavone, a citrus flavonoid, ameliorates corticosterone-induced depression-like behavior and restores brain-derived neurotrophic factor expression, neurogenesis, and neuroplasticity in the hippocampus. Molecules 21(4):541. https://doi.org/10.3390/molecules21040541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xie X, Shen Q, Yu C, Xiao Q, Zhou J, Xiong Z, Li Z, Fu Z (2020) Depression-like behaviors are accompanied by disrupted mitochondrial energy metabolism in chronic corticosterone-induced mice. J Steroid Biochem Mol Biol 200:105607. https://doi.org/10.1016/j.jsbmb.2020.105607

    Article  PubMed  CAS  Google Scholar 

  41. Sarabdjitsingh RA, Meijer OC, de Kloet ER (2010) Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Res 1331:1–11. https://doi.org/10.1016/j.brainres.2010.03.052

    Article  PubMed  CAS  Google Scholar 

  42. Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab DF, Lucassen PJ (2013) Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging 34(6):1662–1673. https://doi.org/10.1016/j.neurobiolaging.2012.11.019

    Article  PubMed  CAS  Google Scholar 

  43. Garza JC, Guo M, Zhang W, Lu XY (2012) Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3beta/beta-catenin signaling. Mol Psychiatry 17(8):790–808. https://doi.org/10.1038/mp.2011.161

    Article  PubMed  CAS  Google Scholar 

  44. Babcock KR, Page JS, Fallon JR, Webb AE (2021) Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports 16(4):681–693. https://doi.org/10.1016/j.stemcr.2021.01.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y (2017) Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res 317:332–339. https://doi.org/10.1016/j.bbr.2016.09.067

    Article  PubMed  Google Scholar 

  46. Gronska-Peski M, Goncalves JT, Hebert JM (2021) Enriched environment promotes adult hippocampal neurogenesis through FGFRs. Neurosci 41(13):2899–2910. https://doi.org/10.1523/JNEUROSCI.2286-20.2021

    Article  CAS  Google Scholar 

  47. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10(9):1110–1115. https://doi.org/10.1038/nn1969

    Article  PubMed  CAS  Google Scholar 

  48. Lee J, Duan W, Long JM, Ingram DK, Mattson MP (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15(2):99–108

    Article  PubMed  CAS  Google Scholar 

  49. Lee J, Seroogy KB, Mattson MP (2002) Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 80(3):539–547. https://doi.org/10.1046/j.0022-3042.2001.00747.x

    Article  PubMed  CAS  Google Scholar 

  50. Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82(6):1367–1375. https://doi.org/10.1046/j.1471-4159.2002.01085.x

    Article  PubMed  CAS  Google Scholar 

  51. Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, Chung HY, Mattson MP et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283(21):14497–14505. https://doi.org/10.1074/jbc.M708373200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee Y, Park HR, Lee JY, Kim J, Yang S, Lee C, Kim K, Kim HS et al (2023) Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice. Arch Pharm Res 46(5):423–437. https://doi.org/10.1007/s12272-023-01440-7

    Article  PubMed  CAS  Google Scholar 

  53. Oh SB, Park HR, Jang YJ, Choi SY, Son TG, Lee J (2013) Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by gamma-ray radiation. Br J Pharmacol 168(2):421–431. https://doi.org/10.1111/j.1476-5381.2012.02142.x

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (Grant No. Grant no. NRF-2021R1A2C1010091). This work was also supported under the framework of international cooperation program managed by the National Research Foundation of Korea (NRF-2022K2A9A2A08000187).

Author information

Authors and Affiliations

Authors

Contributions

Seoyeong Kim: Investigation, Validation, Visualization, Methodology, Writing-original draft, Formal analysis. Seonguk Yang: Investigation, Validation, Visualization, Methodology. Jaehoon Kim: Investigation, Methodology. Ki Wung Chung: Formal analysis. Young-Suk Jung: Validation, Formal analysis. Hae Young Chung: Conceptualization. Jaewon Lee: Conceptualization, Funding acquisition, Resources, Supervision, Project administration, Writing—review & editing.

Corresponding author

Correspondence to Jaewon Lee.

Ethics declarations

Ethics Approval and Consent to Participate

No human subjects were involved in this study. The animal protocol used was reviewed and approved by the Pusan National University-Institutional Animal Care Committee (PNU-IACUC; Approval Number PNU-2021–0083).

Consent of Publication

Not applicable.

Conflict of Interest

The authors have no potential conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Seoyeong Kim and Seonguk Yang contributed equally to the study and should be considered first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Yang, S., Kim, J. et al. Glucocorticoid Receptor Down-Regulation Affects Neural Stem Cell Proliferation and Hippocampal Neurogenesis. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03785-y

Keywords

Navigation