Skip to main content

Advertisement

Log in

Quantitative Proteomic and Phosphoproteomic Analyses Reveal a Role of Death-Associated Protein Kinase 1 in Regulating Hippocampal Synapse

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Death-associated protein kinase 1 (DAPK1) is a stress-responsive calcium/calmodulin (CaM)-regulated serine/threonine protein kinase that is actively involved in stress-induced cell death. The dysregulation of DAPK1 has been established in various neurological disorders such as epilepsy, Alzheimer’s disease (AD), and Parkinson’s disease (PD). Recent research indicates a synaptic localization of DAPK1 in neurons, suggesting a potential role of DAPK1 in modulating synaptic structure and function. However, the key molecules and pathways underlying the influence of DAPK1 on synapses remain elusive. We utilized quantitative proteomic and phosphoproteomic analyses to compare the differences in protein expression and phosphorylation in hippocampal tissues of wild-type (WT) and DAPK1-knockout (KO) mice. Bioinformatic analysis of differentially expressed proteins and phosphoproteins revealed a preferential enrichment of proteins involved in regulating synaptic function, cytoskeletal structure, and neurotransmission. Gene set enrichment analysis (GESA) highlighted altered presynaptic functions including synaptic vesicle priming and glutamate secretion in KO mice. Besides, we observed that proteins with potential phosphorylation motifs of ERK and DAPK1 were overrepresented among the differential phosphoproteins and were highly enriched in neuronal function-related pathways. Furthermore, Western blot analysis validated differences in the expression of several proteins closely associated with presynaptic organization, dendrites and calcium transmembrane transport between KO and WT mice, further corroborating the potential involvement of DAPK1 in the regulation of synaptic functions. Overall, our data provide molecular evidence to elucidate the physiological links between DAPK1 and neuronal functions and help clarify the role of DAPK1 in the pathogenesis of neurodevelopmental and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The original datasets analyzed in the study are included in the supplementary material. Further inquiries are available from the corresponding author upon reasonable request.

References

  1. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41. https://doi.org/10.1038/sj.npp.1301559

    Article  PubMed  Google Scholar 

  2. Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117. https://doi.org/10.1146/annurev-neuro-090919-022842

    Article  CAS  PubMed  Google Scholar 

  3. Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z (2023) Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology 48(1):113–120. https://doi.org/10.1038/s41386-022-01370-w

    Article  PubMed  Google Scholar 

  4. Chen D, Zhou XZ, Lee TH (2019) Death-associated protein kinase 1 as a promising drug target in cancer and Alzheimer's disease. Recent Pat Anticancer Drug Discov 14(2):144–157. https://doi.org/10.2174/1574892814666181218170257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto M, Takahashi H, Nakamura T, Hioki T, Nagayama S, Ooashi N, Sun X, Ishii T, Kudo Y, Nakajima-Iijima S, Kimchi A, Uchino S (1999) Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res 58(5):674–683. https://doi.org/10.1002/(sici)1097-4547(19991201)58:5<674::aid-jnr8>3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  6. Singh P, Ravanan P, Talwar P (2016) Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy. Front Mol Neurosci 9:46. https://doi.org/10.3389/fnmol.2016.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. https://doi.org/10.1016/j.cell.2009.12.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodell DJ, Zaegel V, Coultrap SJ, Hell JW, Bayer KU (2017) DAPK1 mediates LTD by making CaMKII/GluN2B binding LTP specific. Cell Rep 19(11):2231–2243. https://doi.org/10.1016/j.celrep.2017.05.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim BM, You MH, Chen CH, Lee S, Hong Y, Hong Y, Kimchi A, Zhou XZ, Lee TH (2014) Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 5(5):e1237. https://doi.org/10.1038/cddis.2014.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim N, Wang B, Koikawa K, Nezu Y, Qiu C, Lee TH, Zhou XZ (2021) Inhibition of death-associated protein kinase 1 attenuates cis P-tau and neurodegeneration in traumatic brain injury. Prog Neurobiol 203:102072. https://doi.org/10.1016/j.pneurobio.2021.102072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim N, Chen D, Zhou XZ, Lee TH (2019) Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int J Mol Sci 20(13). https://doi.org/10.3390/ijms20133131

  12. Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23(17):R764–R773. https://doi.org/10.1016/j.cub.2013.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15(12):1875–1886. https://doi.org/10.1038/cdd.2008.121

    Article  CAS  PubMed  Google Scholar 

  14. Chen C, Jiang X, Li Y, Yu H, Li S, Zhang Z, Xu H, Yang Y, Liu G, Zhu F, Ren X, Zou L, Xu B, Liu J, Spencer PS, Yang X (2019) Low-dose oral copper treatment changes the hippocampal phosphoproteomic profile and perturbs mitochondrial function in a mouse model of Alzheimer's disease. Free Radic Biol Med 135:144–156. https://doi.org/10.1016/j.freeradbiomed.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570. https://doi.org/10.1093/nar/gkv468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520. https://doi.org/10.1093/nar/gku1267

    Article  CAS  PubMed  Google Scholar 

  17. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD (2019) Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc 14(3):703–721. https://doi.org/10.1038/s41596-019-0128-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou MF, Schwartz D (2011) Biological sequence motif discovery using motif-x. Curr Protoc Bioinformatics Chapter 13:13 15 11-13 15 24. https://doi.org/10.1002/0471250953.bi1315s35

  21. Sugiyama N, Imamura H, Ishihama Y (2019) Large-scale discovery of substrates of the human kinome. Sci Rep 9(1):10503. https://doi.org/10.1038/s41598-019-46385-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen D, Lan G, Li R, Mei Y, Shui X, Gu X, Wang L, Zhang T, Gan CL, Xia Y, Hu L, Tian Y, Zhang M, Lee TH (2022) Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer's disease. Transl Neurodegener 11(1):27. https://doi.org/10.1186/s40035-022-00302-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8(11):4966–4982. https://doi.org/10.1021/pr9003739

    Article  CAS  PubMed  Google Scholar 

  24. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16(5):998–1008. https://doi.org/10.1093/emboj/16.5.998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li R, Zhi S, Lan G, Chen X, Zheng X, Hu L, Wang L, Zhang T, Lee TH, Rao S, Chen D (2023) Ablation of death-associated protein kinase 1 changes the transcriptomic profile and alters neural-related pathways in the brain. Int J Mol Sci 24(7). https://doi.org/10.3390/ijms24076542

  26. Ivanovska J, Mahadevan V, Schneider-Stock R (2014) DAPK and cytoskeleton-associated functions. Apoptosis 19(2):329–338. https://doi.org/10.1007/s10495-013-0916-5

    Article  CAS  PubMed  Google Scholar 

  27. Sharma M, Burre J (2023) alpha-Synuclein in synaptic function and dysfunction. Trends Neurosci 46(2):153–166. https://doi.org/10.1016/j.tins.2022.11.007

    Article  CAS  PubMed  Google Scholar 

  28. Goodell DJ, Tullis JE, Bayer KU (2021) Young DAPK1 knockout mice have altered presynaptic function. J Neurophysiol 125(5):1973–1981. https://doi.org/10.1152/jn.00055.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tullis JE, Bayer KU (2023) Distinct synaptic pools of DAPK1 differentially regulate activity-dependent synaptic CaMKII accumulation. iScience 26(5):106723. https://doi.org/10.1016/j.isci.2023.106723

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang M, Wang B, Li X, Fu C, Wang C, Kang X (2019) alpha-Synuclein: a multifunctional player in exocytosis, endocytosis, and vesicle recycling. Front Neurosci 13:28. https://doi.org/10.3389/fnins.2019.00028

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gureviciene I, Gurevicius K, Tanila H (2007) Role of alpha-synuclein in synaptic glutamate release. Neurobiol Dis 28(1):83–89. https://doi.org/10.1016/j.nbd.2007.06.016

    Article  CAS  PubMed  Google Scholar 

  32. Su Y, Deng MF, Xiong W, Xie AJ, Guo J, Liang ZH, Hu B, Chen JG, Zhu X, Man HY, Lu Y, Liu D, Tang B, Zhu LQ (2019) MicroRNA-26a/death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in Parkinson's disease. Biol Psychiatry 85(9):769–781. https://doi.org/10.1016/j.biopsych.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  33. Shin WH, Chung KC (2020) Death-associated protein kinase 1 phosphorylates alpha-synuclein at Ser129 and exacerbates rotenone-induced toxic aggregation of alpha-synuclein in dopaminergic SH-SY5Y cells. Exp Neurobiol 29(3):207–218. https://doi.org/10.5607/en20014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM (2013) Lewy body-like alpha-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288(21):15194–15210. https://doi.org/10.1074/jbc.M113.457408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sancho-Balsells A, Brito V, Fernandez B, Pardo M, Straccia M, Gines S, Alberch J, Hernandez I, Arranz B, Canals JM, Giralt A (2020) Lack of helios during neural development induces adult schizophrenia-like behaviors associated with aberrant levels of the TRIF-recruiter protein WDFY1. Front Cell Neurosci 14:93. https://doi.org/10.3389/fncel.2020.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ouyang L, Chen Y, Wang Y, Chen Y, Fu AKY, Fu WY, Ip NY (2020) p39-associated Cdk5 activity regulates dendritic morphogenesis. Sci Rep 10(1):18746. https://doi.org/10.1038/s41598-020-75264-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M (2014) Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82(4):773–780. https://doi.org/10.1016/j.neuron.2014.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagahama K, Sakoori K, Watanabe T, Kishi Y, Kawaji K, Koebis M, Nakao K, Gotoh Y, Aiba A, Uesaka N, Kano M (2020) Setd1a insufficiency in mice attenuates excitatory synaptic function and recapitulates schizophrenia-related behavioral abnormalities. Cell Rep 32(11):108126. https://doi.org/10.1016/j.celrep.2020.108126

    Article  CAS  PubMed  Google Scholar 

  39. Di Paola S, Scotto-Rosato A, Medina DL (2018) TRPML1: the Ca((2+))retaker of the lysosome. Cell Calcium 69:112–121. https://doi.org/10.1016/j.ceca.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Fang Y, Cheng X, Lian Y, Xu H (2022) Interaction between TRPML1 and p62 in regulating autophagosome-lysosome fusion and impeding neuroaxonal dystrophy in Alzheimer's disease. Oxid Med Cell Longev 2022:8096009. https://doi.org/10.1155/2022/8096009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Somogyi A, Kirkham ED, Lloyd-Evans E, Winston J, Allen ND, Mackrill JJ, Anderson KE, Hawkins PT, Gardiner SE, Waller-Evans H, Sims R, Boland B, O'Neill C (2023) The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. J Cell Sci 136(6). https://doi.org/10.1242/jcs.259875

  42. Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Abeta in preclinical models of HIV infection. J Neurosci 34(34):11485–11503. https://doi.org/10.1523/JNEUROSCI.0210-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamada S, Sato A, Sakakibara SI (2020) Nwd1 regulates neuronal differentiation and migration through purinosome formation in the developing cerebral cortex. iScience 23(5):101058. https://doi.org/10.1016/j.isci.2020.101058

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang Q, Huang Z, Luo Y, Zheng F, Hu Y, Liu H, Zhu S, He M, Xu D, Li Y, Yang M, Yang Y, Wei X, Gao X, Wang W, Ma J, Ma Y, Wang X, Wang Q (2019) Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus. EBioMedicine 47:470–483. https://doi.org/10.1016/j.ebiom.2019.08.050

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C, Wang X, Zhu LQ, Lu Y (2014) DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci 34(19):6546–6556. https://doi.org/10.1523/JNEUROSCI.5119-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. You MH, Kim BM, Chen CH, Begley MJ, Cantley LC, Lee TH (2017) Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ 24(2):238–250. https://doi.org/10.1038/cdd.2016.114

    Article  CAS  PubMed  Google Scholar 

  47. Tian JH, Das S, Sheng ZH (2003) Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18. J Biol Chem 278(28):26265–26274. https://doi.org/10.1074/jbc.M300492200

    Article  CAS  PubMed  Google Scholar 

  48. Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp TR (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283(15):9999–10014. https://doi.org/10.1074/jbc.M706040200

    Article  CAS  PubMed  Google Scholar 

  49. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24(2):294–304. https://doi.org/10.1038/sj.emboj.7600510

    Article  CAS  PubMed  Google Scholar 

  50. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183. https://doi.org/10.1038/nrn1346

    Article  CAS  PubMed  Google Scholar 

  51. Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157. https://doi.org/10.1038/nrn.2016.183

    Article  CAS  PubMed  Google Scholar 

  52. Yukawa K, Tanaka T, Bai T, Li L, Tsubota Y, Owada-Makabe K, Maeda M, Hoshino K, Akira S, Iso H (2006) Deletion of the kinase domain from death-associated protein kinase enhances spatial memory in mice. Int J Mol Med 17(5):869–873

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the animal facility of Fujian Medical University in assisting with animal maintenance.

Funding

The research was supported by the National Natural Science Foundation of China (82001128, 82271449 and 81970993), the Natural Science Foundation of Fujian Province (2021J01672), and the start-up funding of Fujian Medical University (XRCZX2019039).

Author information

Authors and Affiliations

Authors

Contributions

THL and TZ conceived this project, designed experiments, analyzed the data, and wrote the manuscript. YT performed the experiments and analyzed the data. XZ, LH, and RL helped with the sample collection. XS, LW, and DC offered technical assistance. All authors have contributed to and approved the final manuscript.

Corresponding authors

Correspondence to Tae Ho Lee or Tao Zhang.

Ethics declarations

Ethics Approval

The experimental protocol regarding animals was reviewed and approved by the Animal Welfare & Ethics Committee of Fujian Medical University (FJMU IACUC 2018-053).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 10572 kb)

ESM 2

(XLSX 5126 kb)

ESM 3

(XLSX 2278 kb)

ESM 4

(XLSX 59 kb)

ESM 5

(XLSX 110 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zheng, X., Li, R. et al. Quantitative Proteomic and Phosphoproteomic Analyses Reveal a Role of Death-Associated Protein Kinase 1 in Regulating Hippocampal Synapse. Mol Neurobiol 61, 1794–1806 (2024). https://doi.org/10.1007/s12035-023-03674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03674-4

Keywords

Navigation