Skip to main content

Advertisement

Log in

Transcriptomic Analysis of the Rat Dorsal Root Ganglion After Fracture

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In fractures, pain signals are transmitted from the dorsal root ganglion (DRG) to the brain, and the DRG generates efferent signals to the injured bone to participate in the injury response. However, little is known about how this process occurs. We analyzed DRG transcriptome at 3, 7, 14, and 28 days after fracture. We identified the key pathways through KEGG and GO enrichment analysis. We then used IPA analysis to obtain upstream regulators and disease pathways. Finally, we compared the sequencing results with those of nerve injury to identify the unique transcriptome changes in DRG after fracture. We found that the first 14 days after fracture were the main repair response period, the 3rd day was the peak of repair activity, the 14th day was dominated by the stimulus response, and on the 28th day, the repair response had reached a plateau. ECM-receptor interaction, protein digestion and absorption, and the PI3K-Akt signaling pathway were most significantly enriched, which may be involved in repair regeneration, injury response, and pain transmission. Compared with the nerve injury model, DRG after fracture produced specific alterations related to bone repair, and the bone density function was the most widely activated bone-related function. Our results obtained some important genes and pathways in DRG after fracture, and we also summarized the main features of transcriptome function at each time point through functional annotation clustering of GO pathway, which gave us a deeper understanding of the role played by DRG in fracture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the manuscript and supplementary information.

References

  1. Nascimento AI, Mar FM, Sousa MM (2018) The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function. Prog Neurobiol 168:86–103. https://doi.org/10.1016/j.pneurobio.2018.05.002

    Article  PubMed  Google Scholar 

  2. Meltzer S, Santiago C, Sharma N, Ginty DD (2021) The cellular and molecular basis of somatosensory neuron development. Neuron 109(23):3736–3757. https://doi.org/10.1016/j.neuron.2021.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tomlinson RE, Christiansen BA, Giannone AA, Genetos DC (2020) The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne) 11:646. https://doi.org/10.3389/fendo.2020.00646

    Article  PubMed  Google Scholar 

  4. Elefteriou F (2018) Impact of the autonomic nervous system on the skeleton. Physiol Rev 98(3):1083–1112. https://doi.org/10.1152/physrev.00014.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tomlinson RE, Li Z, Li Z, Minichiello L, Riddle RC, Venkatesan A, Clemens TL (2017) NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 114(18):E3632–e3641. https://doi.org/10.1073/pnas.1701054114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, Shibata S, Yoshida Y et al (2013) Sema3A regulates bone-mass accrual through sensory innervations. Nature 497(7450):490–493. https://doi.org/10.1038/nature12115

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hill EL, Turner R, Elde R (1991) Effects of neonatal sympathectomy and capsaicin treatment on bone remodeling in rats. Neuroscience 44(3):747–755. https://doi.org/10.1016/0306-4522(91)90094-5

    Article  CAS  PubMed  Google Scholar 

  8. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284. https://doi.org/10.1016/j.cell.2009.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR et al (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113(1):155–166. https://doi.org/10.1016/s0306-4522(02)00165-3

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW (2019) Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest 129(12):5137–5150. https://doi.org/10.1172/jci128428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, Chen D, Tian L et al (2016) Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med 22(10):1160–1169. https://doi.org/10.1038/nm.4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berta T, Qadri Y, Tan PH, Ji RR (2017) Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets 21(7):695–703. https://doi.org/10.1080/14728222.2017.1328057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorkin LS, Eddinger KA, Woller SA, Yaksh TL (2018) Origins of antidromic activity in sensory afferent fibers and neurogenic inflammation. Semin Immunopathol 40(3):237–247. https://doi.org/10.1007/s00281-017-0669-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gajda M, Litwin JA, Cichocki T, Timmermans JP, Adriaensen D (2005) Development of sensory innervation in rat tibia: co-localization of CGRP and substance P with growth-associated protein 43 (GAP-43). J Anat 207(2):135–144. https://doi.org/10.1111/j.1469-7580.2005.00434.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sisask G, Silfversward CJ, Bjurholm A, Nilsson O (2013) Ontogeny of sensory and autonomic nerves in the developing mouse skeleton. Auton Neurosci 177(2):237–243. https://doi.org/10.1016/j.autneu.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  16. Imai S, Hukuda S, Maeda T (1994) Neonatal capsaicin pretreatment suppresses intramedullary inflammation in adjuvant-induced spondylitis. Clin Exp Immunol 95(1):108–114. https://doi.org/10.1111/j.1365-2249.1994.tb06023.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16(8):1505–1510. https://doi.org/10.1359/jbmr.2001.16.8.1505

    Article  CAS  PubMed  Google Scholar 

  18. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54(4):969–979. https://doi.org/10.1016/0306-4522(93)90588-7

    Article  CAS  PubMed  Google Scholar 

  19. Plantman S, Zelano J, Novikova LN, Novikov LN, Cullheim S (2013) Neuronal myosin-X is upregulated after peripheral nerve injury and mediates laminin-induced growth of neurites. Mol Cell Neurosci 56:96–101. https://doi.org/10.1016/j.mcn.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  20. Jang DG, Sim HJ, Song EK, Kwon T, Park TJ (2020) Extracellular matrixes and neuroinflammation. BMB Rep 53(10):491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38. https://doi.org/10.1016/j.neulet.2013.12.071

    Article  CAS  PubMed  Google Scholar 

  22. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620. https://doi.org/10.1016/j.it.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Salhotra A, Shah HN, Levi B, Longaker MT (2020) Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 21(11):696–711. https://doi.org/10.1038/s41580-020-00279-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Zhang S, Xue J, Wei Z, Ao P, Shen B, Ding L (2019) CGRP reduces apoptosis of DRG cells induced by high-glucose oidative stress injury through PI3K/AKT induction of heme oxygenase-1 and Nrf-2 expression. Oxid Med Cell Longev 2019:2053149. https://doi.org/10.1155/2019/2053149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang M, Shi X, Luo M, Lan Q, Ullah H, Zhang C, Li S, Chen X, Wang Y, Piao F (2021) Taurine ameliorates axonal damage in sciatic nerve of diabetic rats and high glucose exposed DRG neuron by PI3K/Akt/mTOR-dependent pathway. Amino Acids 53(3):395–406. https://doi.org/10.1007/s00726-021-02957-1

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Gong HY, Xu L (2018) PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 22(20):6905–6911. https://doi.org/10.26355/eurrev_201810_16160

    Article  CAS  PubMed  Google Scholar 

  27. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538. https://doi.org/10.1146/annurev.neuro.29.051605.112929

    Article  CAS  PubMed  Google Scholar 

  28. Bogen O, Joseph EK, Chen X, Levine JD (2008) GDNF hyperalgesia is mediated by PLCgamma, MAPK/ERK, PI3K, CDK5 and Src family kinase signaling and dependent on the IB4-binding protein versican. Eur J Neurosci 28(1):12–19. https://doi.org/10.1111/j.1460-9568.2008.06308.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun RQ, Tu YJ, Yan JY, Willis WD (2006) Activation of protein kinase B/Akt signaling pathway contributes to mechanical hypersensitivity induced by capsaicin. Pain 120(1-2):86–96. https://doi.org/10.1016/j.pain.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  30. Gosselin RD, Varela C, Banisadr G, Mechighel P, Rostene W, Kitabgi P, Melik-Parsadaniantz S (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95(4):1023–1034. https://doi.org/10.1111/j.1471-4159.2005.03431.x

    Article  CAS  PubMed  Google Scholar 

  31. Hermenean A, Oatis D, Herman H, Ciceu A, D'Amico G, Trotta MC (2022) Galectin 1-a key player between tissue repair and fibrosis. Int J Mol Sci 23(10). https://doi.org/10.3390/ijms23105548

  32. Duque G, Huang DC, Dion N, Macoritto M, Rivas D, Li W, Yang XF, Li J, Lian J, Marino FT, Barralet J, Lascau V, Deschênes C, Ste-Marie LG, Kremer R (2011) Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res 26(7):1472–1483. https://doi.org/10.1002/jbmr.350

    Article  CAS  PubMed  Google Scholar 

  33. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, Weitzmann MN, Pacifici R (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122–132. https://doi.org/10.1172/jci30074

    Article  CAS  PubMed  Google Scholar 

  34. Hirbe AC, Uluçkan O, Morgan EA, Eagleton MC, Prior JL, Piwnica-Worms D, Trinkaus K, Apicelli A, Weilbaecher K (2007) Granulocyte colony-stimulating factor enhances bone tumor growth in mice in an osteoclast-dependent manner. Blood 109(8):3424–3431. https://doi.org/10.1182/blood-2006-09-048686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalinski AL, Yoon C, Huffman LD, Duncker PC, Kohen R, Passino R, Hafner H, Johnson C et al (2020) Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. Elife 9. https://doi.org/10.7554/eLife.60223

  36. Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87. https://doi.org/10.1111/j.0105-2896.2005.00329.x

    Article  CAS  PubMed  Google Scholar 

  37. Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, Gu K, Shah V et al (2007) NF-kappaB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13(1):62–69. https://doi.org/10.1038/nm1519

    Article  CAS  PubMed  Google Scholar 

  38. Hou X, Tian F (2022) STAT3-mediated osteogenesis and osteoclastogenesis in osteoporosis. Cell Commun Signal 20(1):112. https://doi.org/10.1186/s12964-022-00924-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou S, Dai Q, Huang X, Jin A, Yang Y, Gong X, Xu H, Gao X, Jiang L (2021) STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nat Commun 12(1):6891. https://doi.org/10.1038/s41467-021-27273-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun G, Wang Z, Ti Y, Wang Y, Wang J, Zhao J, Qian H (2017) STAT3 promotes bone fracture healing by enhancing the FOXP3 expression and the suppressive function of regulatory T cells. Apmis 125(8):752–760. https://doi.org/10.1111/apm.12706

    Article  CAS  PubMed  Google Scholar 

  41. Niemi JP, DeFrancesco-Lisowitz A, Cregg JM, Howarth M, Zigmond RE (2016) Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes a conditioning-like increase in neurite outgrowth and does so via a STAT3 dependent mechanism. Exp Neurol 275:25–37. https://doi.org/10.1016/j.expneurol.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  42. Hwang J, Namgung U (2020) Cdk5 phosphorylation of STAT3 in dorsal root ganglion neurons is involved in promoting axonal regeneration after peripheral nerve injury. Int Neurourol J 24(Suppl 1):S19–S27. https://doi.org/10.5213/inj.2040158.080

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zebboudj AF, Shin V, Boström K (2003) Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. J Cell Biochem 90(4):756–765. https://doi.org/10.1002/jcb.10669

    Article  CAS  PubMed  Google Scholar 

  44. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386(6620):78–81. https://doi.org/10.1038/386078a0

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H, Darnay BG, de Crombrugghe B (2010) Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A 107(29):12919–12924. https://doi.org/10.1073/pnas.0912855107

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V et al (2021) The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. Elife 10. https://doi.org/10.7554/eLife.68217

  47. Ashley JW, Shi Z, Zhao H, Li X, Kesterson RA, Feng X (2011) Genetic ablation of CD68 results in mice with increased bone and dysfunctional osteoclasts. PLoS One 6(10):e25838. https://doi.org/10.1371/journal.pone.0025838

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (82072162 to X.Y. and 81971177 to B.J.), and Natural Science Foundation of Beijing, China (7192215 to X.Y.).

Author information

Authors and Affiliations

Authors

Contributions

X.Y. designed the study. S.Y. processed the data and plotted the figures. X.G. and C.H. instructed all experiments and drafted the manuscript. S.W., J.D., S.G. A.S., and Q.L. analyzed the data. W.G. contributed to the investigation, methodology, and edition of the manuscript.

Corresponding authors

Correspondence to Shaoxun Yuan or Xiaofeng Yin.

Ethics declarations

Ethics Approval

This study was performed in line with the animal ethics requirements of Peking University People’s Hospital (2020PHC015).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 2931 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Huang, C., Wang, S. et al. Transcriptomic Analysis of the Rat Dorsal Root Ganglion After Fracture. Mol Neurobiol 61, 1467–1478 (2024). https://doi.org/10.1007/s12035-023-03637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03637-9

Keywords

Navigation