Skip to main content

Advertisement

Log in

Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Progressive hippocampal degeneration is a key component of Alzheimer’s disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aβ are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are provided as a supplementary file and are available from the corresponding author on reasonable request.

Abbreviations

AD:

Alzheimer’s disease

ARBs:

angiotensin receptor blockers

AT1R:

angiotensin type 1 receptor

aCSF:

artificial cerebrospinal fluid

APP K670N/M671L + I716 V + V717I and PS1 M146L + L286 V:

EFAD mice: mice that express human APOE3- or APOE4- and 5 FAD mutations

FAD:

familial AD models

fEPSPs:

field excitatory post-synaptic potential

HFS:

high-frequency stimulation

LTP:

long-term potentiation

PPF:

paired-pulse facilitation

PTP:

post-tetanic potentiation

SCCP:

Schaffer Collateral Commissural Pathway

References

  1. Alzheimer’s disease facts and figures (2022) Alzheimers Dement. 18(4):700–789

  2. Collaborators, G.B.D.D.F (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet. Public Health 7(2):e105–e125

    Google Scholar 

  3. Mufson EJ et al (2015) Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience 309:51–67

    Article  CAS  PubMed  Google Scholar 

  4. Balestrieri JVL et al (1992) Structural volume of hippocampus and Alzheimer’s disease. Rev Assoc Med Bras 66(4):512–515

    Article  Google Scholar 

  5. Scaduto P et al (2023) Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer’s disease neuropathologic change. Acta Neuropathol 145(3):303–324

    Article  PubMed  Google Scholar 

  6. Liu CC et al (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liao F, Yoon H, Kim J (2017) Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Curr Opin Lipidol 28(1):60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerchner GA et al (2014) APOE epsilon4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory. Neurology 82(8):691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mueller SG, Weiner MW (2009) Selective effect of age, Apo e4, and Alzheimer’s disease on hippocampal subfields. Hippocampus 19(6):558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wolk DA, Dickerson BC, I. Alzheimer’s Disease Neuroimaging (2010) Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc Natl Acad Sci U S A 107(22):10256–10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trommer BL et al (2004) ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 15(17):2655–2658

    Article  CAS  PubMed  Google Scholar 

  12. Tai LM et al (2017) EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer’s disease. J Lipid Res 58(9):1733–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu DS et al (2015) APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice. Mol Neurodegener 10:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trivedi MA et al (2008) fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer’s disease. Neuropsychologia 46(6):1667–1678

    Article  PubMed  Google Scholar 

  15. Bookheimer SY et al (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343(7):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Filippini N et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 106(17):7209–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunz L et al (2015) Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science 350(6259):430–433

    Article  CAS  PubMed  Google Scholar 

  18. Busche MA et al (2012) Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 109(22):8740–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Billings LM et al (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688

    Article  CAS  PubMed  Google Scholar 

  20. Vyas Y, Montgomery JM, Cheyne JE (2020) Hippocampal deficits in amyloid-beta-related rodent models of Alzheimer’s disease. Front Neurosci 14:266

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trommer BL et al (2005) ApoE isoform-specific effects on LTP: blockade by oligomeric amyloid-beta1-42. Neurobiol Dis 18(1):75–82

    Article  CAS  PubMed  Google Scholar 

  22. Kitamura HW et al (2004) Age-dependent enhancement of hippocampal long-term potentiation in knock-in mice expressing human apolipoprotein E4 instead of mouse apolipoprotein E. Neurosci Lett 369(3):173–178

    Article  CAS  PubMed  Google Scholar 

  23. Korwek KM et al (2009) ApoE isoform-dependent changes in hippocampal synaptic function. Mol Neurodegener 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen Y et al (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A 107(26):12011–12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lennon MJ et al (2019) Midlife hypertension and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 71(1):307–316

    Article  PubMed  Google Scholar 

  26. de Gasparo M et al (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52(3):415–472

    PubMed  Google Scholar 

  27. Kehoe PG et al (2016) Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-beta and tau pathology. Alzheimers Res Ther 8(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cosarderelioglu C et al (2022) Higher angiotensin II type 1 receptor levels and activity in the postmortem brains of older persons with Alzheimer’s dementia. J Gerontol A Biol Sci Med Sci 77(4):664–672

    Article  CAS  PubMed  Google Scholar 

  29. Ismael S et al (2021) Renin-angiotensin system alterations in the human Alzheimer’s disease brain. J Alzheimers Dis 84(4):1473–1484

    Article  CAS  PubMed  Google Scholar 

  30. Savaskan E et al (2001) Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol Aging 22(4):541–546

    Article  CAS  PubMed  Google Scholar 

  31. Mogi M et al (2008) Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun 375(3):446–449

    Article  CAS  PubMed  Google Scholar 

  32. Ongali B et al (2014) Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis 68:126–136

    Article  CAS  PubMed  Google Scholar 

  33. Torika N et al (2017) Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer’s disease mice. Brain Behav Immun 64:80–90

    Article  CAS  PubMed  Google Scholar 

  34. Saavedra JM (2017) Beneficial effects of angiotensin II receptor blockers in brain disorders. Pharmacol Res 125(Pt A):91–103

    Article  CAS  PubMed  Google Scholar 

  35. Saavedra JM (2012) Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol 32(5):667–681

    Article  CAS  PubMed  Google Scholar 

  36. Scheinman SB et al (2021) Systemic candesartan treatment modulates behavior, synaptic protein levels, and neuroinflammation in female mice that express human APOE4. Front Neurosci 15:628403

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davies NM et al (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis 26(4):699–708

    Article  PubMed  Google Scholar 

  38. Saavedra JM (2016) Evidence to consider angiotensin II receptor blockers for the treatment of early Alzheimer’s disease. Cell Mol Neurobiol 36(2):259–279

    Article  CAS  PubMed  Google Scholar 

  39. Loera-Valencia R et al (2021) Brain renin-angiotensin system as novel and potential therapeutic target for Alzheimer’s disease. Int J Mol Sci 22(18)

  40. Singh MR, Vigh J, Amberg GC (2021) Angiotensin-II modulates GABAergic neurotransmission in the mouse substantia nigra. eNeuro 8(2)

  41. Richards EM et al (1999) Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Mol Neurobiol 19(1):25–41

    Article  CAS  PubMed  Google Scholar 

  42. Pan HL (2004) Brain angiotensin II and synaptic transmission. Neuroscientist 10(5):422–431

    Article  CAS  PubMed  Google Scholar 

  43. Mooney RD, Zhang Y, Rhoades RW (1994) Effects of angiotensin II on visual neurons in the superficial laminae of the hamster’s superior colliculus. Vis Neurosci 11(6):1163–1173

    Article  CAS  PubMed  Google Scholar 

  44. Li DP, Pan HL (2005) Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons. J Pharmacol Exp Ther 313(3):1035–1045

    Article  CAS  PubMed  Google Scholar 

  45. Li DP, Chen SR, Pan HL (2003) Angiotensin II stimulates spinally projecting paraventricular neurons through presynaptic disinhibition. J Neurosci 23(12):5041–5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Youmans KL et al (2012) APOE4-specific changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 287(50):41774–41786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Church E et al (2022) Synaptic integration of subquantal neurotransmission by colocalized G protein-coupled receptors in presynaptic terminals. J Neurosci 42(6):980–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zaldua S et al (2020) Epidermal growth factor treatment of female mice that express APOE4 at an age of advanced pathology mitigates behavioral and cerebrovascular dysfunction. Heliyon 6(5):e03919

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bashir ZI et al (1991) Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349(6305):156–158

    Article  CAS  PubMed  Google Scholar 

  50. Cochilla AJ, Alford S (1998) Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20(5):1007–1016

    Article  CAS  PubMed  Google Scholar 

  51. Leung LS, Fu XW (1994) Factors affecting paired-pulse facilitation in hippocampal CA1 neurons in vitro. Brain Res 650(1):75–84

    Article  CAS  PubMed  Google Scholar 

  52. Santschi LA, Stanton PK (2003) A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Res 962(1-2):78–91

    Article  CAS  PubMed  Google Scholar 

  53. Jackman SL, Regehr WG (2017) The mechanisms and functions of synaptic facilitation. Neuron 94(3):447–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Opitz B (2014) Memory function and the hippocampus. Front Neurol Neurosci 34:51–59

    Article  PubMed  Google Scholar 

  55. Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369(1633):20130288

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bao JX, Kandel ER, Hawkins RD (1997) Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses. Science 275(5302):969–973

    Article  CAS  PubMed  Google Scholar 

  57. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  58. Langdon RB, Johnson JW, Barrionuevo G (1995) Posttetanic potentiation and presynaptically induced long-term potentiation at the mossy fiber synapse in rat hippocampus. J Neurobiol 26(3):370–385

    Article  CAS  PubMed  Google Scholar 

  59. Sastry BR, Goh JW, Auyeung A (1986) Associative induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus. Science 232(4753):988–990

    Article  CAS  PubMed  Google Scholar 

  60. Tran TT et al (2017) Increased hippocampal activation in ApoE-4 carriers and non-carriers with amnestic mild cognitive impairment. Neuroimage Clin 13:237–245

    Article  PubMed  Google Scholar 

  61. Nichols LM et al (2012) Interactive effect of apolipoprotein e genotype and age on hippocampal activation during memory processing in healthy adults. Arch Gen Psychiatry 69(8):804–813

    Article  CAS  PubMed  Google Scholar 

  62. Diaz-Arrastia R et al (2003) Increased risk of late posttraumatic seizures associated with inheritance of APOE epsilon4 allele. Arch Neurol 60(6):818–822

    Article  PubMed  Google Scholar 

  63. Liang Y et al (2019) Association of apolipoprotein E genotypes with epilepsy risk: a systematic review and meta-analysis. Epilepsy Behav 98(Pt A):27–35

    Article  PubMed  Google Scholar 

  64. Gouras GK et al (1997) Increased apolipoprotein E epsilon 4 in epilepsy with senile plaques. Ann Neurol 41(3):402–404

    Article  CAS  PubMed  Google Scholar 

  65. Lamoureux L et al (2021) APOE4 promotes tonic-clonic seizures, an effect modified by familial Alzheimer’s disease mutations. Front Cell Dev Biol 9:656521

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lynch MA (1998) Analysis of the mechanisms underlying the age-related impairment in long-term potentiation in the rat. Rev Neurosci 9(3):169–201

    Article  CAS  PubMed  Google Scholar 

  67. Barnes CA (2003) Long-term potentiation and the ageing brain. Philos Trans R Soc Lond B Biol Sci 358(1432):765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nuriel T et al (2017) Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat Commun 8(1):1464

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sun GZ et al (2017) Hippocampal synaptic and neural network deficits in young mice carrying the human APOE4 gene. CNS Neurosci Ther 23(9):748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiao F et al (2014) Apolipoprotein E4 impairs in vivo hippocampal long-term synaptic plasticity by reducing the phosphorylation of CaMKIIalpha and CREB. J Alzheimers Dis 41(4):1165–1176

    Article  CAS  PubMed  Google Scholar 

  71. Balducci C et al (2011) The gamma-secretase modulator CHF5074 restores memory and hippocampal synaptic plasticity in plaque-free Tg2576 mice. J Alzheimers Dis 24(4):799–816

    Article  CAS  PubMed  Google Scholar 

  72. Gong B et al (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114(11):1624–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang EH et al (2006) AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc Natl Acad Sci U S A 103(9):3410–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kimura R, Ohno M (2009) Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis 33(2):229–235

    Article  CAS  PubMed  Google Scholar 

  75. D’Amelio M et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14(1):69–76

    Article  PubMed  Google Scholar 

  76. Richards JG et al (2003) PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J Neurosci 23(26):8989–9003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Palop JJ et al (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55(5):697–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mango D et al (2019) Targeting synaptic plasticity in experimental models of Alzheimer’s disease. Front Pharmacol 10:778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zaman SH et al (2000) Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer’s disease mutation is normalized with a benzodiazepine. Neurobiol Dis 7(1):54–63

    Article  CAS  PubMed  Google Scholar 

  80. Parent A et al (1999) Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis 6(1):56–62

    Article  CAS  PubMed  Google Scholar 

  81. Oddo S et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  CAS  PubMed  Google Scholar 

  82. Auffret A et al (2009) Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer’s disease. J Neurosci 29(32):10144–10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davis KE, Fox S, Gigg J (2014) Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer’s disease in vivo. PLoS One 9(3):e91203

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tuminello ER, Han SD (2011) The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations. Int J Alzheimers Dis 2011:726197

    PubMed  PubMed Central  Google Scholar 

  85. Han SD, Bondi MW (2008) Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimers Dement 4(4):251–254

    Article  CAS  PubMed  Google Scholar 

  86. Kazim SF et al (2017) Early-onset network hyperexcitability in presymptomatic Alzheimer’s disease transgenic mice is suppressed by passive immunization with anti-human APP/Abeta antibody and by mGluR5 blockade. Front Aging Neurosci 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hijazi S et al (2020) Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer’s disease. Mol Psychiatry 25(12):3380–3398

    Article  CAS  PubMed  Google Scholar 

  88. Najm R, Jones EA, Huang Y (2019) Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Mol Neurodegener 14(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  89. Flowers SA, Rebeck GW (2020) APOE in the normal brain. Neurobiol Dis 136:104724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Konings SC et al (2021) Astrocytic and neuronal apolipoprotein E isoforms differentially affect neuronal excitability. Front Neurosci 15:734001

    Article  PubMed  PubMed Central  Google Scholar 

  91. Larramona-Arcas R et al (2020) Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol Neurodegener 15(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramakrishna S et al (2021) APOE4 affects basal and NMDAR-mediated protein synthesis in neurons by perturbing calcium homeostasis. J Neurosci 41(42):8686–8709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Veinbergs I et al (2002) Neurotoxic effects of apolipoprotein E4 are mediated via dysregulation of calcium homeostasis. J Neurosci Res 67(3):379–387

    Article  CAS  PubMed  Google Scholar 

  94. Berridge MJ (2011) Calcium signalling and Alzheimer’s disease. Neurochem Res 36(7):1149–1156

    Article  CAS  PubMed  Google Scholar 

  95. Dumanis SB et al (2013) APOE genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. J Neurochem 124(1):4–14

    Article  CAS  PubMed  Google Scholar 

  96. Weeber EJ et al (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277(42):39944–39952

    Article  CAS  PubMed  Google Scholar 

  97. Wright JW, Harding JW (2019) Contributions by the brain renin-angiotensin system to memory, cognition, and Alzheimer’s disease. J Alzheimers Dis 67(2):469–480

    Article  PubMed  Google Scholar 

  98. Jackson L et al (2018) Within the brain: the renin angiotensin system. Int J Mol Sci 19(3)

  99. Trigiani LJ et al (2018) Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension 72(5):1217–1226

    Article  CAS  PubMed  Google Scholar 

  100. Royea J et al (2020) AT2R’s (angiotensin II type 2 receptor’s) role in cognitive and cerebrovascular deficits in a mouse model of Alzheimer disease. Hypertension 75(6):1464–1474

    Article  CAS  PubMed  Google Scholar 

  101. Ouk M et al (2021) The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer’s disease: the importance of blood-brain barrier penetration and APOE epsilon4 carrier status. Alzheimers Res Ther 13(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Qiu WQ et al (2013) Angiotensin converting enzyme inhibitors and the reduced risk of Alzheimer’s disease in the absence of apolipoprotein E4 allele. J Alzheimers Dis 37(2):421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barnes KL, DeWeese DM, Andresen MC (2003) Angiotensin potentiates excitatory sensory synaptic transmission to medial solitary tract nucleus neurons. Am J Physiol Regul Integr Comp Physiol 284(5):R1340–R1353

    Article  CAS  PubMed  Google Scholar 

  104. Xiong H, Marshall KC (1994) Angiotensin II depresses glutamate depolarizations and excitatory postsynaptic potentials in locus coeruleus through angiotensin II subtype 2 receptors. Neuroscience 62(1):163–175

    Article  CAS  PubMed  Google Scholar 

  105. Denny JB et al (1991) Angiotensin II blocks hippocampal long-term potentiation. Brain Res 567(2):321–324

    Article  CAS  PubMed  Google Scholar 

  106. von Bohlenund Halbach O, Albrecht D (1998) Angiotensin II inhibits long-term potentiation within the lateral nucleus of the amygdala through AT1 receptors. Peptides 19(6):1031–1036

    Article  Google Scholar 

  107. Lu WY et al (2000) In CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors. J Neurosci 20(12):4452–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiong ZG et al (1998) Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol Pharmacol 54(6):1055–1063

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health grants R01AG061114 (LMT), R61NS114353 (LMT), R01MH086507 (KYT), and University of Illinois at Chicago Institutional funds (LMT & KYT).

Author information

Authors and Affiliations

Authors

Contributions

L. M. T., S. B. S., S. A., and K. Y. T. designed the study and interpreted data. S. B. S. conducted experiments. L. M. T., S. B. S., and S. A. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leon M. Tai.

Ethics declarations

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval

All protocols follow the UIC Institutional Animal Care and Use Committee protocols.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheinman, S.B., Tseng, K.Y., Alford, S. et al. Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II. Mol Neurobiol 61, 120–131 (2024). https://doi.org/10.1007/s12035-023-03556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03556-9

Keywords

Navigation