Skip to main content

Advertisement

Log in

Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Busche MA, Hyman BT (2020) Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193. https://doi.org/10.1038/s41593-020-0687-6

    Article  PubMed  CAS  Google Scholar 

  2. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  PubMed  CAS  Google Scholar 

  3. Golde TE (2022) Disease-modifying therapies for Alzheimer’s disease: more questions than answers. Neurotherapeutics 19:209–227. https://doi.org/10.1007/s13311-022-01201-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397. https://doi.org/10.1194/jlr.R400004-JLR200

    Article  PubMed  CAS  Google Scholar 

  5. Luo J, Yang H, Song BL (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21:225–245. https://doi.org/10.1038/s41580-019-0190-7

    Article  PubMed  CAS  Google Scholar 

  6. Dietschy JM (2009) Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem 390:287–293. https://doi.org/10.1515/BC.2009.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Arenas F, Garcia-Ruiz C, Fernandez-Checa JC (2017) Intracellular cholesterol trafficking and impact in neurodegeneration. Front Mol Neurosci 10:382. https://doi.org/10.3389/fnmol.2017.00382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S (2019) Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol 190:104–114. https://doi.org/10.1016/j.jsbmb.2019.03.003

    Article  PubMed  CAS  Google Scholar 

  9. Rudge JD (2022) A new hypothesis for Alzheimer’s disease: the lipid invasion model. J Alzheimers Dis Rep 6:129–161. https://doi.org/10.3233/ADR-210299

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varma VR, Busra Luleci H, Oommen AM, Varma S, Blackshear CT, Griswold ME, An Y et al (2021) Abnormal brain cholesterol homeostasis in Alzheimer’s disease-a targeted metabolomic and transcriptomic study. NPJ Aging Mech Dis 7:11. https://doi.org/10.1038/s41514-021-00064-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075. https://doi.org/10.1073/pnas.0305799101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lazar AN, Bich C, Panchal M, Desbenoit N, Petit VW, Touboul D, Dauphinot L et al (2013) Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol 125:133–144. https://doi.org/10.1007/s00401-012-1041-1

    Article  PubMed  CAS  Google Scholar 

  13. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631. https://doi.org/10.1016/s0140-6736(00)03155-x

    Article  PubMed  CAS  Google Scholar 

  14. Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z (2021) Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol 58:2183–2201. https://doi.org/10.1007/s12035-020-02232-6

    Article  PubMed  CAS  Google Scholar 

  15. Kapourchali FR, Surendiran G, Goulet A, Moghadasian MH (2016) The role of dietary cholesterol in lipoprotein metabolism and related metabolic abnormalities: a mini-review. Crit Rev Food Sci Nutr 56:2408–2415. https://doi.org/10.1080/10408398.2013.842887

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Liu Q (2015) Cholesterol metabolism and homeostasis in the brain. Protein Cell 6:254–264. https://doi.org/10.1007/s13238-014-0131-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Orth M, Bellosta S (2012) Cholesterol: its regulation and role in central nervous system disorders. Cholesterol 2012:292598. https://doi.org/10.1155/2012/292598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138. https://doi.org/10.1038/nrm2336

    Article  PubMed  CAS  Google Scholar 

  19. Nanjundaiah S, Chidambaram H, Chandrashekar M, Chinnathambi S (2021) Role of microglia in regulating cholesterol and tau pathology in Alzheimer’s disease. Cell Mol Neurobiol 41:651–668. https://doi.org/10.1007/s10571-020-00883-6

    Article  PubMed  CAS  Google Scholar 

  20. Howe V, Sharpe LJ, Prabhu AV, Brown AJ (2017) New insights into cellular cholesterol acquisition: promoter analysis of human HMGCR and SQLE, two key control enzymes in cholesterol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 1862:647–657. https://doi.org/10.1016/j.bbalip.2017.03.009

    Article  PubMed  CAS  Google Scholar 

  21. Martin MG, Pfrieger F, Dotti CG (2014) Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 15:1036–1052. https://doi.org/10.15252/embr.201439225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340. https://doi.org/10.1016/s0092-8674(00)80213-5

    Article  PubMed  CAS  Google Scholar 

  23. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100:12027–12032. https://doi.org/10.1073/pnas.1534923100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96:11041–11048. https://doi.org/10.1073/pnas.96.20.11041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46. https://doi.org/10.1016/j.cell.2005.12.022

    Article  PubMed  CAS  Google Scholar 

  26. Brown MS, Radhakrishnan A, Goldstein JL (2018) Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem 87:783–807. https://doi.org/10.1146/annurev-biochem-062917-011852

    Article  PubMed  CAS  Google Scholar 

  27. Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, Goldstein JL (2004) Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell 15:259–268. https://doi.org/10.1016/j.molcel.2004.06.019

    Article  PubMed  CAS  Google Scholar 

  28. Sun LP, Seemann J, Goldstein JL, Brown MS (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci U S A 104:6519–6526. https://doi.org/10.1073/pnas.0700907104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS (2008) Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 8:512–521. https://doi.org/10.1016/j.cmet.2008.10.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Espenshade PJ, Cheng D, Goldstein JL, Brown MS (1999) Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 274:22795–22804. https://doi.org/10.1074/jbc.274.32.22795

    Article  PubMed  CAS  Google Scholar 

  31. Zelenski NG, Rawson RB, Brown MS, Goldstein JL (1999) Membrane topology of S2P, a protein required for intramembranous cleavage of sterol regulatory element-binding proteins. J Biol Chem 274:21973–21980. https://doi.org/10.1074/jbc.274.31.21973

    Article  PubMed  CAS  Google Scholar 

  32. Mahley RW (2016) Central nervous system lipoproteins: apoe and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol 36:1305–1315. https://doi.org/10.1161/ATVBAHA.116.307023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 50:357–371. https://doi.org/10.1016/j.plipres.2011.06.002

    Article  PubMed  CAS  Google Scholar 

  34. Turri M, Marchi C, Adorni MP, Calabresi L, Zimetti F (2022) Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 1867:159123. https://doi.org/10.1016/j.bbalip.2022.159123

    Article  PubMed  CAS  Google Scholar 

  35. Macias-Vidal J, Guerrero-Hernandez M, Estanyol JM, Aguado C, Knecht E, Coll MJ, Bachs O (2016) Identification of lysosomal Npc1-binding proteins: cathepsin D activity is regulated by NPC1. Proteomics 16:150–158. https://doi.org/10.1002/pmic.201500110

    Article  PubMed  CAS  Google Scholar 

  36. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166. https://doi.org/10.1111/j.1471-4159.2007.05099.x

    Article  PubMed  CAS  Google Scholar 

  37. Petrov AM, Kasimov MR, Zefirov AL (2017) Cholesterol in the pathogenesis of Alzheimer’s, Parkinson’s diseases and autism: link to synaptic dysfunction. Acta Naturae 9:26–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, Zafar S et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18:26. https://doi.org/10.1186/s12944-019-0965-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Loving BA, Bruce KD (2020) Lipid and lipoprotein metabolism in Microglia. Front Physiol 11:393. https://doi.org/10.3389/fphys.2020.00393

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang TY, Chang CC, Cheng D (1997) Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 66:613–638. https://doi.org/10.1146/annurev.biochem.66.1.613

    Article  PubMed  CAS  Google Scholar 

  41. Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815. https://doi.org/10.1161/01.ATV.0000120374.59826.1b

    Article  PubMed  CAS  Google Scholar 

  42. Vitali C, Wellington CL, Calabresi L (2014) HDL and cholesterol handling in the brain. Cardiovasc Res 103:405–413. https://doi.org/10.1093/cvr/cvu148

    Article  PubMed  CAS  Google Scholar 

  43. Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E et al (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277:42781–42789. https://doi.org/10.1074/jbc.M207601200

    Article  PubMed  CAS  Google Scholar 

  44. Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278:22980–22988. https://doi.org/10.1074/jbc.M303415200

    Article  PubMed  CAS  Google Scholar 

  45. Petrov AM, Pikuleva IA (2019) Cholesterol 24-hydroxylation by CYP46A1: benefits of modulation for brain diseases. Neurotherapeutics 16:635–648. https://doi.org/10.1007/s13311-019-00731-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, Bjorkhem I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A 93:9799–9804. https://doi.org/10.1073/pnas.93.18.9799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li D, Zhang J, Liu Q (2022) Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci 45:401–414. https://doi.org/10.1016/j.tins.2022.01.002

    Article  PubMed  CAS  Google Scholar 

  48. Bjorkhem I, Andersson U, Ellis E, Alvelius G, Ellegard L, Diczfalusy U, Sjovall J et al (2001) From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J Biol Chem 276:37004–37010. https://doi.org/10.1074/jbc.M103828200

    Article  PubMed  CAS  Google Scholar 

  49. Staurenghi E, Giannelli S, Testa G, Sottero B, Leonarduzzi G, Gamba P (2021) Cholesterol dysmetabolism in Alzheimer’s disease: a starring role for astrocytes? Antioxidants (Basel) 10:https://doi.org/10.3390/antiox10121890

  50. Meaney S, Heverin M, Panzenboeck U, Ekstrom L, Axelsson M, Andersson U, Diczfalusy U et al (2007) Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res 48:944–951. https://doi.org/10.1194/jlr.M600529-JLR200

    Article  PubMed  CAS  Google Scholar 

  51. Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65:261–311. https://doi.org/10.1146/annurev.physiol.65.092101.142528

    Article  PubMed  CAS  Google Scholar 

  52. Murthy S, Born E, Mathur SN, Field FJ (2002) LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J Lipid Res 43:1054–1064. https://doi.org/10.1194/jlr.m100358-jlr200

    Article  PubMed  CAS  Google Scholar 

  53. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 97:12097–12102. https://doi.org/10.1073/pnas.200367697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kalaany NY, Mangelsdorf DJ (2006) LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191. https://doi.org/10.1146/annurev.physiol.68.033104.152158

    Article  PubMed  CAS  Google Scholar 

  55. Moutinho M, Landreth GE (2017) Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J Lipid Res 58:1937–1949. https://doi.org/10.1194/jlr.R075556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nishimaki-Mogami T, Tamehiro N, Sato Y, Okuhira K, Sai K, Kagechika H, Shudo K et al (2008) The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem Pharmacol 76:1006–1013. https://doi.org/10.1016/j.bcp.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  57. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E et al (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58. https://doi.org/10.1038/83348

    Article  PubMed  CAS  Google Scholar 

  58. Ogata M, Tsujita M, Hossain MA, Akita N, Gonzalez FJ, Staels B, Suzuki S et al (2009) On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 205:413–419. https://doi.org/10.1016/j.atherosclerosis.2009.01.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Silva JC, de Oliveira EM, Turato WM, Trossini GHG, Maltarollo VG, Pitta MGR, Pitta IR et al (2018) GQ-11: A new PPAR agonist improves obesity-induced metabolic alterations in LDLr(-/-) mice. Int J Obes (Lond) 42:1062–1072. https://doi.org/10.1038/s41366-018-0011-7

    Article  PubMed  CAS  Google Scholar 

  60. Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI et al (2008) Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 29:422–437. https://doi.org/10.1016/j.nbd.2007.10.005

    Article  PubMed  CAS  Google Scholar 

  61. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118. https://doi.org/10.1038/nrneurol.2012.263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chang TY, Yamauchi Y, Hasan MT, Chang C (2017) Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res 58:2239–2254. https://doi.org/10.1194/jlr.R075630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Williams T, Borchelt DR, Chakrabarty P (2020) Therapeutic approaches targeting apolipoprotein E function in Alzheimer’s disease. Mol Neurodegener 15:8. https://doi.org/10.1186/s13024-020-0358-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323:170–182. https://doi.org/10.1016/j.neuroscience.2015.01.007

    Article  PubMed  CAS  Google Scholar 

  65. Nunes VS, Cazita PM, Catanozi S, Nakandakare ER, Quintao ECR (2018) Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice. J Bioenerg Biomembr 50:283–287. https://doi.org/10.1007/s10863-018-9757-9

    Article  PubMed  CAS  Google Scholar 

  66. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. https://doi.org/10.1126/science.8346443

    Article  PubMed  CAS  Google Scholar 

  67. Sullivan PM, Han B, Liu F, Mace BE, Ervin JF, Wu S, Koger D et al (2011) Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging 32:791–801. https://doi.org/10.1016/j.neurobiolaging.2009.05.011

    Article  PubMed  CAS  Google Scholar 

  68. Rawat V, Wang S, Sima J, Bar R, Liraz O, Gundimeda U, Parekh T et al (2019) ApoE4 alters ABCA1 membrane trafficking in astrocytes. J Neurosci 39:9611–9622. https://doi.org/10.1523/JNEUROSCI.1400-19.2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tcw J, Qian L, Pipalia NH, Chao MJ, Liang SA, Shi Y, Jain BR et al (2022) Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 185:2213-2233 e2225. https://doi.org/10.1016/j.cell.2022.05.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fernandez CG, Hamby ME, McReynolds ML, Ray WJ (2019) The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front Aging Neurosci 11:14. https://doi.org/10.3389/fnagi.2019.00014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Staurenghi E, Leoni V, Lo Iacono M, Sottero B, Testa G, Giannelli S, Leonarduzzi G, et al. (2022) ApoE3 vs. ApoE4 astrocytes: a detailed analysis provides new insights into differences in cholesterol homeostasis. Antioxidants (Basel) 11:https://doi.org/10.3390/antiox11112168

  72. Saher G, Quintes S, Nave KA (2011) Cholesterol: a novel regulatory role in myelin formation. Neuroscientist 17:79–93. https://doi.org/10.1177/1073858410373835

    Article  PubMed  CAS  Google Scholar 

  73. Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM, Effenberger A et al (2022) APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611:769–779. https://doi.org/10.1038/s41586-022-05439-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Behl T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S (2021) The interplay of ABC transporters in Abeta translocation and cholesterol metabolism: implicating their roles in Alzheimer’s disease. Mol Neurobiol 58:1564–1582. https://doi.org/10.1007/s12035-020-02211-x

    Article  PubMed  CAS  Google Scholar 

  75. Marchi C, Adorni MP, Caffarra P, Ronda N, Spallazzi M, Barocco F, Galimberti D et al (2019) ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease. J Lipid Res 60:1449–1456. https://doi.org/10.1194/jlr.P091033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yassine HN, Feng Q, Chiang J, Petrosspour LM, Fonteh AN, Chui HC, Harrington MG (2016) ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. J Am Heart Assoc 5:https://doi.org/10.1161/JAHA.115.002886

  77. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH et al (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279:41197–41207. https://doi.org/10.1074/jbc.M407962200

    Article  PubMed  CAS  Google Scholar 

  78. Hirsch-Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, Parkinson PF et al (2005) The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 280:43243–43256. https://doi.org/10.1074/jbc.M508781200

    Article  PubMed  CAS  Google Scholar 

  79. Canepa E, Borghi R, Vina J, Traverso N, Gambini J, Domenicotti C, Marinari UM et al (2011) Cholesterol and amyloid-beta: evidence for a cross-talk between astrocytes and neuronal cells. J Alzheimers Dis 25:645–653. https://doi.org/10.3233/JAD-2011-110053

    Article  PubMed  CAS  Google Scholar 

  80. Nordestgaard LT, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2015) Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. Alzheimers Dement 11:1430–1438. https://doi.org/10.1016/j.jalz.2015.04.006

    Article  PubMed  Google Scholar 

  81. El Asmar Z, Terrand J, Jenty M, Host L, Mlih M, Zerr A, Justiniano H et al (2016) Convergent signaling pathways controlled by LRP1 (receptor-related protein 1) cytoplasmic and extracellular domains limit cellular cholesterol accumulation. J Biol Chem 291:5116–5127. https://doi.org/10.1074/jbc.M116.714485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Brown J 3rd, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D et al (2004) Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 279:34674–34681. https://doi.org/10.1074/jbc.M402324200

    Article  PubMed  CAS  Google Scholar 

  83. Testa G, Staurenghi E, Zerbinati C, Gargiulo S, Iuliano L, Giaccone G, Fanto F et al (2016) Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol 10:24–33. https://doi.org/10.1016/j.redox.2016.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hughes TM, Rosano C, Evans RW, Kuller LH (2013) Brain cholesterol metabolism, oxysterols, and dementia. J Alzheimers Dis 33:891–911. https://doi.org/10.3233/JAD-2012-121585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Panchal M, Loeper J, Cossec JC, Perruchini C, Lazar A, Pompon D, Duyckaerts C (2010) Enrichment of cholesterol in microdissected Alzheimer’s disease senile plaques as assessed by mass spectrometry. J Lipid Res 51:598–605. https://doi.org/10.1194/jlr.M001859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gylys KH, Fein JA, Yang F, Miller CA, Cole GM (2007) Increased cholesterol in Abeta-positive nerve terminals from Alzheimer’s disease cortex. Neurobiol Aging 28:8–17. https://doi.org/10.1016/j.neurobiolaging.2005.10.018

    Article  PubMed  CAS  Google Scholar 

  87. Distl R, Treiber-Held S, Albert F, Meske V, Harzer K, Ohm TG (2003) Cholesterol storage and tau pathology in Niemann-Pick type C disease in the brain. J Pathol 200:104–111. https://doi.org/10.1002/path.1320

    Article  PubMed  CAS  Google Scholar 

  88. Kodam A, Maulik M, Peake K, Amritraj A, Vetrivel KS, Thinakaran G, Vance JE et al (2010) Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemann-Pick type C1-deficient mouse brains. Glia 58:1267–1281. https://doi.org/10.1002/glia.21001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22:3460–3476. https://doi.org/10.1093/hmg/ddt201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2017) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry 22:407–416. https://doi.org/10.1038/mp.2016.23

    Article  PubMed  CAS  Google Scholar 

  91. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2017) Osmotin reduced amyloid beta (Abeta) burden by inhibiting SREBP2 expression in APP/PS1 mice. Mol Psychiatry 22:323. https://doi.org/10.1038/mp.2017.12

    Article  PubMed  CAS  Google Scholar 

  92. Marquer C, Laine J, Dauphinot L, Hanbouch L, Lemercier-Neuillet C, Pierrot N, Bossers K et al (2014) Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes. Mol Neurodegener 9:60. https://doi.org/10.1186/1750-1326-9-60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D et al (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 96:14088–14093. https://doi.org/10.1073/pnas.96.24.14088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572. https://doi.org/10.1038/42408

    Article  PubMed  CAS  Google Scholar 

  95. Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21

    PubMed  CAS  Google Scholar 

  96. Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273. https://doi.org/10.1016/j.neuropharm.2008.02.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hicks DA, Nalivaeva NN, Turner AJ (2012) Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signaling. Front Physiol 3:189. https://doi.org/10.3389/fphys.2012.00189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A (2020) Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 61:636–654. https://doi.org/10.1194/jlr.TR119000427

    Article  PubMed  CAS  Google Scholar 

  99. Cho YY, Kwon OH, Park MK, Kim TW, Chung S (2019) Elevated cellular cholesterol in familial Alzheimer’s presenilin 1 mutation is associated with lipid raft localization of beta-amyloid precursor protein. PLoS One 14:e0210535. https://doi.org/10.1371/journal.pone.0210535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cho YY, Kwon OH, Chung S (2020) Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains. Molecules 25:https://doi.org/10.3390/molecules25235490

  101. Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123. https://doi.org/10.1083/jcb.200207113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Osenkowski P, Ye W, Wang R, Wolfe MS, Selkoe DJ (2008) Direct and potent regulation of gamma-secretase by its lipid microenvironment. J Biol Chem 283:22529–22540. https://doi.org/10.1074/jbc.M801925200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Harris B, Pereira I, Parkin E (2009) Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein. Brain Res 1296:203–215. https://doi.org/10.1016/j.brainres.2009.07.105

    Article  PubMed  CAS  Google Scholar 

  104. Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 100:11735–11740. https://doi.org/10.1073/pnas.1635130100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB (2021) Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A 118:https://doi.org/10.1073/pnas.2102191118

  106. Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM (2005) Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280:43236–43242. https://doi.org/10.1074/jbc.M508780200

    Article  PubMed  CAS  Google Scholar 

  107. Kim J, Yoon H, Horie T, Burchett JM, Restivo JL, Rotllan N, Ramirez CM et al (2015) microRNA-33 regulates ApoE lipidation and amyloid-beta metabolism in the brain. J Neurosci 35:14717–14726. https://doi.org/10.1523/JNEUROSCI.2053-15.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mohamed A, Saavedra L, Di Pardo A, Sipione S, Posse de Chaves E (2012) beta-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 32:6490–6500. https://doi.org/10.1523/JNEUROSCI.0630-12.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA et al (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7:1118–1123. https://doi.org/10.1038/ncb1313

    Article  PubMed  CAS  Google Scholar 

  110. Magrane J, Rosen KM, Smith RC, Walsh K, Gouras GK, Querfurth HW (2005) Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci 25:10960–10969. https://doi.org/10.1523/JNEUROSCI.1723-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Mohamed A, Viveiros A, Williams K, Posse de Chaves E (2018) Abeta inhibits SREBP-2 activation through Akt inhibition. J Lipid Res 59:1–13. https://doi.org/10.1194/jlr.M076703

    Article  PubMed  CAS  Google Scholar 

  112. Sharpe LJ, Luu W, Brown AJ (2011) Akt phosphorylates Sec24: new clues into the regulation of ER-to-Golgi trafficking. Traffic 12:19–27. https://doi.org/10.1111/j.1600-0854.2010.01133.x

    Article  PubMed  CAS  Google Scholar 

  113. Naseri NN, Wang H, Guo J, Sharma M, Luo W (2019) The complexity of tau in Alzheimer’s disease. Neurosci Lett 705:183–194. https://doi.org/10.1016/j.neulet.2019.04.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wu M, Zhang M, Yin X, Chen K, Hu Z, Zhou Q, Cao X et al (2021) The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases. Transl Neurodegener 10:45. https://doi.org/10.1186/s40035-021-00270-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Distl R, Meske V, Ohm TG (2001) Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol 101:547–554. https://doi.org/10.1007/s004010000314

    Article  PubMed  CAS  Google Scholar 

  116. Love S, Bridges LR, Case CP (1995) Neurofibrillary tangles in Niemann-Pick disease type C. Brain 118(Pt 1):119–129. https://doi.org/10.1093/brain/118.1.119

    Article  PubMed  Google Scholar 

  117. van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, Steenvoorden E et al (2019) Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-beta in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell 24:363-375 e369. https://doi.org/10.1016/j.stem.2018.12.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732. https://doi.org/10.1016/j.jalz.2016.02.010

    Article  PubMed  Google Scholar 

  119. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, Van Leuven F (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2:22. https://doi.org/10.1186/1742-2094-2-22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930–941. https://doi.org/10.1016/j.biopsych.2010.06.012

    Article  PubMed  CAS  Google Scholar 

  121. Smith AM, Davey K, Tsartsalis S, Khozoie C, Fancy N, Tang SS, Liaptsi E et al (2022) Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology. Acta Neuropathol 143:75–91. https://doi.org/10.1007/s00401-021-02372-6

    Article  PubMed  CAS  Google Scholar 

  122. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M, Sen P, Ruhwedel T et al (2018) Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359:684–688. https://doi.org/10.1126/science.aan4183

    Article  PubMed  CAS  Google Scholar 

  123. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Avila-Munoz E, Arias C (2015) Cholesterol-induced astrocyte activation is associated with increased amyloid precursor protein expression and processing. Glia 63:2010–2022. https://doi.org/10.1002/glia.22874

    Article  PubMed  Google Scholar 

  125. Staurenghi E, Cerrato V, Gamba P, Testa G, Giannelli S, Leoni V, Caccia C et al (2021) Oxysterols present in Alzheimer’s disease brain induce synaptotoxicity by activating astrocytes: a major role for lipocalin-2. Redox Biol 39:101837. https://doi.org/10.1016/j.redox.2020.101837

    Article  PubMed  CAS  Google Scholar 

  126. Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69:155–167. https://doi.org/10.1097/NEN.0b013e3181cb5af4

    Article  PubMed  CAS  Google Scholar 

  127. McManus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:15703–15715. https://doi.org/10.1523/JNEUROSCI.0552-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. von Bernhardi R, Tichauer JE, Eugenin J (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 112:1099–1114. https://doi.org/10.1111/j.1471-4159.2009.06537.x

    Article  CAS  Google Scholar 

  129. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700. https://doi.org/10.1089/ARS.2009.2695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Resende R, Moreira PI, Proenca T, Deshpande A, Busciglio J, Pereira C, Oliveira CR (2008) Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med 44:2051–2057. https://doi.org/10.1016/j.freeradbiomed.2008.03.012

    Article  PubMed  CAS  Google Scholar 

  131. Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405. https://doi.org/10.1523/JNEUROSCI.4909-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. de Dios C, Bartolessis I, Roca-Agujetas V, Barbero-Camps E, Mari M, Morales A, Colell A (2019) Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress. Redox Biol 26:101283. https://doi.org/10.1016/j.redox.2019.101283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yang DS, Kumar A, Stavrides P, Peterson J, Peterhoff CM, Pawlik M, Levy E et al (2008) Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer’s disease. Am J Pathol 173:665–681. https://doi.org/10.2353/ajpath.2008.071176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Segatto M, Leboffe L, Trapani L, Pallottini V (2014) Cholesterol homeostasis failure in the brain: implications for synaptic dysfunction and cognitive decline. Curr Med Chem 21:2788–2802. https://doi.org/10.2174/0929867321666140303142902

    Article  PubMed  CAS  Google Scholar 

  135. Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60:1158–1171. https://doi.org/10.1007/s00018-003-3018-7

    Article  PubMed  CAS  Google Scholar 

  136. van Deijk AF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, Mansvelder HD et al (2017) Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 65:670–682. https://doi.org/10.1002/glia.23120

    Article  PubMed  Google Scholar 

  137. Karasinska JM, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit JK, Stukas S et al (2013) ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis 54:445–455. https://doi.org/10.1016/j.nbd.2013.01.018

    Article  PubMed  CAS  Google Scholar 

  138. Fitz NF, Carter AY, Tapias V, Castranio EL, Kodali R, Lefterov I, Koldamova R (2017) ABCA1 deficiency affects basal cognitive deficits and dendritic density in mice. J Alzheimers Dis 56:1075–1085. https://doi.org/10.3233/JAD-161056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gamba P, Testa G, Sottero B, Gargiulo S, Poli G, Leonarduzzi G (2012) The link between altered cholesterol metabolism and Alzheimer’s disease. Ann N Y Acad Sci 1259:54–64. https://doi.org/10.1111/j.1749-6632.2012.06513.x

    Article  PubMed  CAS  Google Scholar 

  140. Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G (2015) Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci 7:119. https://doi.org/10.3389/fnagi.2015.00119

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wang HL, Wang YY, Liu XG, Kuo SH, Liu N, Song QY, Wang MW (2016) Cholesterol, 24-hydroxycholesterol, and 27-hydroxycholesterol as surrogate biomarkers in cerebrospinal fluid in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 51:45–55. https://doi.org/10.3233/JAD-150734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U et al (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 41:195–198

    Article  PubMed  CAS  Google Scholar 

  143. Bretillon L, Siden A, Wahlund LO, Lutjohann D, Minthon L, Crisby M, Hillert J et al (2000) Plasma levels of 24S-hydroxycholesterol in patients with neurological diseases. Neurosci Lett 293:87–90. https://doi.org/10.1016/s0304-3940(00)01466-x

    Article  PubMed  CAS  Google Scholar 

  144. Leoni V, Solomon A, Lovgren-Sandblom A, Minthon L, Blennow K, Hansson O, Wahlund LO et al (2013) Diagnostic power of 24S-hydroxycholesterol in cerebrospinal fluid: candidate marker of brain health. J Alzheimers Dis 36:739–747. https://doi.org/10.3233/JAD-130035

    Article  PubMed  CAS  Google Scholar 

  145. Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U et al (2004) Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 45:186–193. https://doi.org/10.1194/jlr.M300320-JLR200

    Article  PubMed  CAS  Google Scholar 

  146. Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, Matute E et al (2019) 27-hydroxycholesterol induces aberrant morphology and synaptic dysfunction in hippocampal neurons. Cereb Cortex 29:429–446. https://doi.org/10.1093/cercor/bhy274

    Article  PubMed  Google Scholar 

  147. Shafaati M, Marutle A, Pettersson H, Lovgren-Sandblom A, Olin M, Pikuleva I, Winblad B et al (2011) Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J Lipid Res 52:1004–1010. https://doi.org/10.1194/jlr.M014548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Yau JL, Rasmuson S, Andrew R, Graham M, Noble J, Olsson T, Fuchs E et al (2003) Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer’s disease. Neuroscience 121:307–314. https://doi.org/10.1016/s0306-4522(03)00438-x

    Article  PubMed  CAS  Google Scholar 

  149. Nehra G, Bauer B, Hartz AMS (2022) Blood-brain barrier leakage in Alzheimer’s disease: from discovery to clinical relevance. Pharmacol Ther 234:108119. https://doi.org/10.1016/j.pharmthera.2022.108119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Heverin M, Meaney S, Lutjohann D, Diczfalusy U, Wahren J, Bjorkhem I (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 46:1047–1052. https://doi.org/10.1194/jlr.M500024-JLR200

    Article  PubMed  CAS  Google Scholar 

  151. Sandebring-Matton A, Goikolea J, Bjorkhem I, Paternain L, Kemppainen N, Laatikainen T, Ngandu T et al (2021) 27-Hydroxycholesterol, cognition, and brain imaging markers in the FINGER randomized controlled trial. Alzheimers Res Ther 13:56. https://doi.org/10.1186/s13195-021-00790-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Djelti F, Braudeau J, Hudry E, Dhenain M, Varin J, Bieche I, Marquer C et al (2015) CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain 138:2383–2398. https://doi.org/10.1093/brain/awv166

    Article  PubMed  Google Scholar 

  153. Kotti T, Head DD, McKenna CE, Russell DW (2008) Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proc Natl Acad Sci U S A 105:11394–11399. https://doi.org/10.1073/pnas.0805556105

    Article  PubMed  PubMed Central  Google Scholar 

  154. Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524. https://doi.org/10.1016/j.chemphyslip.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  155. Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O (2009) Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener 4:1. https://doi.org/10.1186/1750-1326-4-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Hudry E, Van Dam D, Kulik W, De Deyn PP, Stet FS, Ahouansou O, Benraiss A et al (2010) Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol Ther 18:44–53. https://doi.org/10.1038/mt.2009.175

    Article  PubMed  CAS  Google Scholar 

  157. Petrov AM, Lam M, Mast N, Moon J, Li Y, Maxfield E, Pikuleva IA (2019) CYP46A1 activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics 16:710–724. https://doi.org/10.1007/s13311-019-00737-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AH, Ramaekers FC, de Vente J et al (2006) 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281:12799–12808. https://doi.org/10.1074/jbc.M601019200

    Article  PubMed  CAS  Google Scholar 

  159. Fan J, Donkin J, Wellington C (2009) Greasing the wheels of Abeta clearance in Alzheimer’s disease: the role of lipids and apolipoprotein E. BioFactors 35:239–248. https://doi.org/10.1002/biof.37

    Article  PubMed  CAS  Google Scholar 

  160. Burlot MA, Braudeau J, Michaelsen-Preusse K, Potier B, Ayciriex S, Varin J, Gautier B et al (2015) Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like tau pathology. Hum Mol Genet 24:5965–5976. https://doi.org/10.1093/hmg/ddv268

    Article  PubMed  CAS  Google Scholar 

  161. Zhao Y, Hu D, Wang R, Sun X, Ropelewski P, Hubler Z, Lundberg K et al (2022) ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer’s disease models. Nat Commun 13:1121. https://doi.org/10.1038/s41467-022-28769-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Wang T, Cui S, Hao L, Liu W, Wang L, Ju M, Feng W, et al. (2022) Regulation of Th17/Treg balance by 27-hydroxycholesterol and 24S-hydroxycholesterol correlates with learning and memory ability in mice. Int J Mol Sci 23:https://doi.org/10.3390/ijms23084370

  163. Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa H, Li Y et al (2017) Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology 123:465–476. https://doi.org/10.1016/j.neuropharm.2017.06.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Kolsch H, Lutjohann D, Tulke A, Bjorkhem I, Rao ML (1999) The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res 818:171–175. https://doi.org/10.1016/s0006-8993(98)01274-8

    Article  PubMed  CAS  Google Scholar 

  165. Yamanaka K, Saito Y, Yamamori T, Urano Y, Noguchi N (2011) 24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis. J Biol Chem 286:24666–24673. https://doi.org/10.1074/jbc.M111.236273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Gamba P, Leonarduzzi G, Tamagno E, Guglielmotto M, Testa G, Sottero B, Gargiulo S et al (2011) Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-beta in amplifying neuronal damage in Alzheimer’s disease: three partners in crime. Aging Cell 10:403–417. https://doi.org/10.1111/j.1474-9726.2011.00681.x

    Article  PubMed  CAS  Google Scholar 

  167. Gamba P, Guglielmotto M, Testa G, Monteleone D, Zerbinati C, Gargiulo S, Biasi F et al (2014) Up-regulation of beta-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine. Aging Cell 13:561–572. https://doi.org/10.1111/acel.12206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Testa G, Rossin D, Poli G, Biasi F, Leonarduzzi G (2018) Implication of oxysterols in chronic inflammatory human diseases. Biochimie 153:220–231. https://doi.org/10.1016/j.biochi.2018.06.006

    Article  PubMed  CAS  Google Scholar 

  169. Knight EM, Martins IV, Gumusgoz S, Allan SM, Lawrence CB (2014) High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging 35:1821–1832. https://doi.org/10.1016/j.neurobiolaging.2014.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Anstey KJ, Ashby-Mitchell K, Peters R (2017) Updating the evidence on the association between serum cholesterol and risk of late-life dementia: review and meta-analysis. J Alzheimers Dis 56:215–228. https://doi.org/10.3233/JAD-160826

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rickman OJ, Baple EL, Crosby AH (2020) Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain 143:1073–1087. https://doi.org/10.1093/brain/awz382

    Article  PubMed  Google Scholar 

  172. Dias IH, Polidori MC, Griffiths HR (2014) Hypercholesterolaemia-induced oxidative stress at the blood-brain barrier. Biochem Soc Trans 42:1001–1005. https://doi.org/10.1042/BST20140164

    Article  PubMed  CAS  Google Scholar 

  173. Bjorkhem I (2006) Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 260:493–508. https://doi.org/10.1111/j.1365-2796.2006.01725.x

    Article  PubMed  CAS  Google Scholar 

  174. Kadish I, Kumar A, Beitnere U, Jennings E, McGilberry W, van Groen T (2016) Dietary composition affects the development of cognitive deficits in WT and Tg AD model mice. Exp Gerontol 86:39–49. https://doi.org/10.1016/j.exger.2016.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhang X, Lv C, An Y, Liu Q, Rong H, Tao L, Wang Y, et al. (2018) Increased levels of 27-hydroxycholesterol induced by dietary cholesterol in brain contribute to learning and memory impairment in rats. Mol Nutr Food Res 62:https://doi.org/10.1002/mnfr.201700531

  176. Loera-Valencia R, Vazquez-Juarez E, Munoz A, Gerenu G, Gomez-Galan M, Lindskog M, DeFelipe J et al (2021) High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus. Sci Rep 11:3736. https://doi.org/10.1038/s41598-021-83008-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Heverin M, Maioli S, Pham T, Mateos L, Camporesi E, Ali Z, Winblad B et al (2015) 27-hydroxycholesterol mediates negative effects of dietary cholesterol on cognition in mice. Behav Brain Res 278:356–359. https://doi.org/10.1016/j.bbr.2014.10.018

    Article  PubMed  CAS  Google Scholar 

  178. Wang T, Zhang X, Wang Y, Liu W, Wang L, Hao L, Ju M et al (2022) High cholesterol and 27-hydroxycholesterol contribute to phosphorylation of tau protein by impairing autophagy causing learning and memory impairment in C57BL/6J mice. J Nutr Biochem 106:109016. https://doi.org/10.1016/j.jnutbio.2022.109016

    Article  PubMed  CAS  Google Scholar 

  179. Zhang X, Xi Y, Yu H, An Y, Wang Y, Tao L, Wang Y et al (2019) 27-hydroxycholesterol promotes Abeta accumulation via altering Abeta metabolism in mild cognitive impairment patients and APP/PS1 mice. Brain Pathol 29:558–573. https://doi.org/10.1111/bpa.12698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P (2021) Relationship between amyloid-beta deposition and blood-brain barrier dysfunction in Alzheimer’s disease. Front Cell Neurosci 15:695479. https://doi.org/10.3389/fncel.2021.695479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Shepherd CE, Goyette J, Utter V, Rahimi F, Yang Z, Geczy CL, Halliday GM (2006) Inflammatory S100A9 and S100A12 proteins in Alzheimer’s disease. Neurobiol Aging 27:1554–1563. https://doi.org/10.1016/j.neurobiolaging.2005.09.033

    Article  PubMed  CAS  Google Scholar 

  182. Loera-Valencia R, Ismail MA, Goikolea J, Lodeiro M, Mateos L, Bjorkhem I, Puerta E et al (2021) Hypercholesterolemia and 27-hydroxycholesterol increase S100A8 and RAGE expression in the brain: a link between cholesterol, alarmins, and neurodegeneration. Mol Neurobiol 58:6063–6076. https://doi.org/10.1007/s12035-021-02521-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Wang Y, An Y, Zhang D, Yu H, Zhang X, Wang Y, Tao L et al (2019) 27-Hydroxycholesterol alters synaptic structural and functional plasticity in hippocampal neuronal cultures. J Neuropathol Exp Neurol 78:238–247. https://doi.org/10.1093/jnen/nlz002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–1368

    Article  PubMed  CAS  Google Scholar 

  185. Wang Y, Zhang X, Wang T, Liu W, Wang L, Hao L, Ju M et al (2020) 27-Hydroxycholesterol promotes the transfer of astrocyte-derived cholesterol to neurons in co-cultured SH-SY5Y cells and C6 cells. Front Cell Dev Biol 8:580599. https://doi.org/10.3389/fcell.2020.580599

    Article  PubMed  PubMed Central  Google Scholar 

  186. Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, Lisanti MP (1999) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 274:12702–12709. https://doi.org/10.1074/jbc.274.18.12702

    Article  PubMed  CAS  Google Scholar 

  187. McGuinness B, Craig D, Bullock R, Passmore P (2016) Statins for the prevention of dementia. Cochrane Database Syst Rev 2016:CD003160. https://doi.org/10.1002/14651858.CD003160.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  188. Huang W, Li Z, Zhao L, Zhao W (2017) Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomed Pharmacother 92:46–57. https://doi.org/10.1016/j.biopha.2017.05.060

    Article  PubMed  CAS  Google Scholar 

  189. Geifman N, Brinton RD, Kennedy RE, Schneider LS, Butte AJ (2017) Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimers Res Ther 9:10. https://doi.org/10.1186/s13195-017-0237-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443. https://doi.org/10.1001/archneur.57.10.1439

    Article  PubMed  CAS  Google Scholar 

  191. Wang C, Zhao F, Shen K, Wang W, Siedlak SL, Lee HG, Phelix CF et al (2019) The sterol regulatory element-binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathol 29:530–543. https://doi.org/10.1111/bpa.12691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Sharpe LJ, Coates HW, Brown AJ (2020) Post-translational control of the long and winding road to cholesterol. J Biol Chem 295:17549–17559. https://doi.org/10.1074/jbc.REV120.010723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X et al (2022) The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 10:35. https://doi.org/10.1186/s40478-022-01338-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357. https://doi.org/10.1126/science.294.5545.1354

    Article  PubMed  CAS  Google Scholar 

  195. Martin MG, Ahmed T, Korovaichuk A, Venero C, Menchon SA, Salas I, Munck S et al (2014) Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. EMBO Mol Med 6:902–917. https://doi.org/10.15252/emmm.201303711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Thelen KM, Falkai P, Bayer TA, Lutjohann D (2006) Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 403:15–19. https://doi.org/10.1016/j.neulet.2006.04.034

    Article  PubMed  CAS  Google Scholar 

  197. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22:269–285. https://doi.org/10.1016/j.celrep.2017.12.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Perez-Canamas A, Sarroca S, Melero-Jerez C, Porquet D, Sansa J, Knafo S, Esteban JA et al (2016) A diet enriched with plant sterols prevents the memory impairment induced by cholesterol loss in senescence-accelerated mice. Neurobiol Aging 48:1–12. https://doi.org/10.1016/j.neurobiolaging.2016.08.009

    Article  PubMed  CAS  Google Scholar 

  199. Martiskainen H, Paldanius KMA, Natunen T, Takalo M, Marttinen M, Leskela S, Huber N et al (2017) DHCR24 exerts neuroprotection upon inflammation-induced neuronal death. J Neuroinflammation 14:215. https://doi.org/10.1186/s12974-017-0991-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 81702236); the Changsha Municipal Natural Science Foundation (Grant No. kq2202251); the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 20A333, 21B0895, and 20B350); the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3363 and 2023JJ30429); the Project for Young Backbone Teachers in Colleges and Universities in Hunan Province (Grant No. [2020]43); the Hunan Province Key Research and Development Program (Grant No. 2020SK2104); the Scientific Research Project of Hunan Provincial Sports Bureau (Grant No. 2021XH008 and 2021XH090); the Postgraduate Scientific Research Project of Hunan Normal University College of Physical Education (Grant No. 202101010 and 202101009); and the Hunan Province College Students Research Learning and Innovative Experiment Project (Grant No. S202210542039).

Author information

Authors and Affiliations

Authors

Contributions

ZLH and YQY conceived the topic and designed the outline of this review. ZLH, ZT, and MQL drafted the manuscript and contributed to the literature review and manuscript writing. All authors have contributed to the manuscript revising and editing.

Corresponding author

Correspondence to Wen-Feng Liu.

Ethics declarations

Ethics Approval

Not applicable.

Research Involving Human Participants and or Animals

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors agreed to publish this review.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZL., Yuan, YQ., Tong, Z. et al. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer’s Disease. Mol Neurobiol 60, 6852–6868 (2023). https://doi.org/10.1007/s12035-023-03529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03529-y

Keywords

Navigation