Skip to main content

Advertisement

Log in

Plausible Role of Mitochondrial DNA Copy Number in Neurodegeneration—a Need for Therapeutic Approach in Parkinson’s Disease (PD)

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is an advancing age-associated progressive brain disorder which has various diverse factors, among them mitochondrial dysfunction involves in dopaminergic (DA) degeneration. Aging causes a rise in mitochondrial abnormalities which leads to structural and functional modifications in neuronal activity and cell death in PD. This ends in deterioration of mitochondrial function, mitochondrial alterations, mitochondrial DNA copy number (mtDNA CN) and oxidative phosphorylation (OXPHOS) capacity. mtDNA levels or mtDNA CN in PD have reported that mtDNA depletion would be a predisposing factor in PD pathogenesis. To maintain the mtDNA levels, therapeutic approaches have been focused on mitochondrial biogenesis in PD. The depletion of mtDNA levels in PD can be influenced by autophagic dysregulation, apoptosis, neuroinflammation, oxidative stress, sirtuins, and calcium homeostasis. The current review describes the regulation of mtDNA levels and discusses the plausible molecular pathways in mtDNA CN depletion in PD pathogenesis. We conclude by suggesting further research on mtDNA depletion which might show a promising effect in predicting and diagnosing PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Mohana Devi S, Mahalaxmi I, Aswathy NP et al (2020) Does retina play a role in Parkinson’s disease? Acta Neurol Belg 120:257–265. https://doi.org/10.1007/s13760-020-01274-w

    Article  PubMed  Google Scholar 

  2. Jayaramayya K, Iyer M, Venkatesan D et al (2020) Unraveling correlative roles of dopamine transporter (DAT) and Parkin in Parkinson’s disease (PD)—a road to discovery? Brain Res Bull 157:169–179. https://doi.org/10.1016/j.brainresbull.2020.02.001

    Article  PubMed  CAS  Google Scholar 

  3. (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17:939–953. https://doi.org/10.1016/S1474-4422(18)30295-3

  4. Venkatesan D, Iyer M, S RW et al (2021) The association between multiple risk factors, clinical correlations and molecular insights in Parkinson’s disease patients from Tamil Nadu population, India. Neurosci Lett 755:135903. https://doi.org/10.1016/j.neulet.2021.135903

    Article  PubMed  CAS  Google Scholar 

  5. Venkatesan D, Iyer M, Krishnan P et al (2021) A late-onset Parkinson’s disease in tribes in India—a case report. Brain Disorders 3:100015. https://doi.org/10.1016/j.dscb.2021.100015

    Article  CAS  Google Scholar 

  6. Venkatesan D, Iyer M, Narayanasamy A et al (2020) Kynurenine pathway in Parkinson’s disease—an update. eNeurologicalSci 21:100270. https://doi.org/10.1016/j.ensci.2020.100270

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu Y, Chen M, Jiang J (2019) Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 49:35–45. https://doi.org/10.1016/j.mito.2019.07.003

    Article  PubMed  CAS  Google Scholar 

  8. Chocron ES, Munkácsy E, Pickering AM (2019) Cause or casualty: the role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta (BBA)-Mol Basis Dis 1865:285–297

    Article  CAS  Google Scholar 

  9. Ding J, Sidore C, Butler TJ et al (2015) Assessing mitochondrial DNA variation and copy number in lymphocytes of ~2,000 Sardinians using tailored sequencing analysis tools. PLoS Genet 11:e1005306. https://doi.org/10.1371/journal.pgen.1005306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Knez J, Winckelmans E, Plusquin M et al (2016) Correlates of peripheral blood mitochondrial DNA content in a general population. Am J Epidemiol 183:138–146. https://doi.org/10.1093/aje/kwv175

    Article  PubMed  Google Scholar 

  11. Mengel-From J, Thinggaard M, Dalgård C et al (2014) Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum Genet 133:1149–1159. https://doi.org/10.1007/s00439-014-1458-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mahalaxmi I, Subramaniam MD, Gopalakrishnan AV, Vellingiri B (2021) Dysfunction in mitochondrial electron transport chain complex I, pyruvate dehydrogenase activity, and mutations in ND1 and ND4 gene in autism spectrum disorder subjects from Tamil Nadu population, India. Mol Neurobiol 58:5303–5311. https://doi.org/10.1007/s12035-021-02492-w

    Article  PubMed  CAS  Google Scholar 

  13. Müller-Nedebock AC, Brennan RR, Venter M et al (2019) The unresolved role of mitochondrial DNA in Parkinson’s disease: an overview of published studies, their limitations, and future prospects. Neurochem Int 129:104495. https://doi.org/10.1016/j.neuint.2019.104495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Park J-S, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18:21. https://doi.org/10.1007/s11910-018-0829-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980. https://doi.org/10.1126/science.6823561

    Article  PubMed  CAS  Google Scholar 

  16. Davis GC, Williams AC, Markey SP et al (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254. https://doi.org/10.1016/0165-1781(79)90006-4

    Article  PubMed  CAS  Google Scholar 

  17. Mizuno Y, Suzuki K, Sone N, Saitoh T (1987) Inhibition of ATP synthesis by 1-methyl-4- phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains. Neurosci Lett 81:204–208. https://doi.org/10.1016/0304-3940(87)90366-1

    Article  PubMed  CAS  Google Scholar 

  18. Parker WDJ, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723. https://doi.org/10.1002/ana.410260606

    Article  PubMed  Google Scholar 

  19. El-Hattab AW, Scaglia F (2013) Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10:186–198. https://doi.org/10.1007/s13311-013-0177-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR et al (2019) The role of PGC-1α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front Neurosci 13:292. https://doi.org/10.3389/fnins.2019.00292

    Article  PubMed  PubMed Central  Google Scholar 

  21. Piantadosi CA, Suliman HB (2012) Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 53:2043–2053. https://doi.org/10.1016/j.freeradbiomed.2012.09.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gureev AP, Shaforostova EA, Popov VN (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 10:435. https://doi.org/10.3389/fgene.2019.00435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ganel L, Chen L, Christ R et al (2021) Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Hum Genomics 15:34. https://doi.org/10.1186/s40246-021-00335-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Grünewald A, Rygiel KA, Hepplewhite PD et al (2016) Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease Neurons. Ann Neurol 79:366–378. https://doi.org/10.1002/ana.24571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dölle C, Flønes I, Nido GS et al (2016) Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun 7:13548. https://doi.org/10.1038/ncomms13548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pyle A, Anugrha H, Kurzawa-Akanbi M et al (2016) Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol Aging 38:216.e7-216.e10. https://doi.org/10.1016/j.neurobiolaging.2015.10.033

    Article  PubMed  CAS  Google Scholar 

  27. Chen C, Vincent AE, Blain AP et al (2020) Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissues. Neurobiol Dis 134:104631. https://doi.org/10.1016/j.nbd.2019.104631

    Article  PubMed  CAS  Google Scholar 

  28. Bury AG, Pyle A, Elson JL et al (2017) Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann Neurol 82:1016–1021. https://doi.org/10.1002/ana.25099

    Article  PubMed  CAS  Google Scholar 

  29. Müller-Nedebock AC, Meldau S, Lombard C et al (2022) Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson’s disease. Parkinsonism Relat Disord 101:1–5. https://doi.org/10.1016/j.parkreldis.2022.06.003

    Article  PubMed  CAS  Google Scholar 

  30. Wei W, Keogh MJ, Wilson I et al (2017) Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol Commun 5:13. https://doi.org/10.1186/s40478-016-0404-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chen S-H, Kuo C-W, Lin T-K et al (2020) Dopamine therapy and the regulation of oxidative stress and mitochondrial DNA copy number in patients with Parkinson’s disease. Antioxidants (Basel) 9(11):1159. https://doi.org/10.3390/antiox9111159

    Article  PubMed  CAS  Google Scholar 

  32. Davis RL, Wong SL, Carling PJ et al (2020) Serum FGF-21, GDF-15, and blood mtDNA CN are not biomarkers of Parkinson disease. Neurol Clin Pract 10:40–46. https://doi.org/10.1212/CPJ.0000000000000702

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stoccoro A, Smith AR, Baldacci F et al (2021) Mitochondrial D-loop region methylation and copy number in peripheral blood DNA of Parkinson’s disease patients. Genes (Basel) 12(5):720. https://doi.org/10.3390/genes12050720

    Article  PubMed  CAS  Google Scholar 

  34. Puigròs M, Calderon A, Pérez-Soriano A et al (2022) Cell-free mitochondrial DNA deletions in idiopathic, but not LRRK2, Parkinson’s disease. Neurobiol Dis 174:105885. https://doi.org/10.1016/j.nbd.2022.105885

    Article  PubMed  CAS  Google Scholar 

  35. Lowes H, Pyle A, Santibanez-Koref M, Hudson G (2020) Circulating cell-free mitochondrial DNA levels in Parkinson’s disease are influenced by treatment. Mol Neurodegener 15:10. https://doi.org/10.1186/s13024-020-00362-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li K, Zhang J, Ji C, Wang L (2016) MiR-144–3p and its target gene β-amyloid precursor protein regulate 1-methyl-4-phenyl-1,2–3,6-tetrahydropyridine-induced mitochondrial dysfunction. Mol Cells 39:543–549. https://doi.org/10.14348/molcells.2016.0050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Peng K, Xiao J, Yang L et al (2019) Mutual antagonism of PINK1/Parkin and PGC-1α contributes to maintenance of mitochondrial homeostasis in rotenone-induced neurotoxicity. Neurotox Res 35:331–343. https://doi.org/10.1007/s12640-018-9957-4

    Article  PubMed  CAS  Google Scholar 

  38. Fu M-H, Wu C-W, Lee Y-C et al (2018) Nrf2 activation attenuates the early suppression of mitochondrial respiration due to the α-synuclein overexpression. Biomed J 41:169–183. https://doi.org/10.1016/j.bj.2018.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim H, Lee JY, Park SJ, Kwag E, Kim J, Shin JH (2022) S-nitrosylated PARIS Leads to the sequestration of PGC-1α into insoluble deposits in Parkinson’s disease model. Cells 11(22):3682. https://doi.org/10.3390/cells11223682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yun SP, Kim D, Kim S, Kim S, Karuppagounder SS, Kwon SH, Lee S, Kam TI, Lee S, Ham S, Park JH (2018) α-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener 13(1):1–9. https://doi.org/10.1186/s13024-017-0233-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, Andersen JP, Zhang W, Strong R, Martinez PA, Musi N (2019) Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson’s diseases. Aging Cell 18(3):e12941. https://doi.org/10.1111/acel.12941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jan A, Jansonius B, Delaidelli A, An YA, Ferreira N, Smits LM, Negri GL, Schwamborn JC, Jensen PH, Mackenzie IR, Taubert S (2018) Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol Commun 6(1):1–17. https://doi.org/10.1186/s40478-018-0554-9

    Article  CAS  Google Scholar 

  43. Sastre D, Zafar F, Torres CAM, Piper D, Kirik D, Sanders LH, Qi S, Schüle B (2023) Nuclease-dead S. aureus Cas9 downregulates alpha-synuclein and reduces mtDNA damage and oxidative stress levels in patient-derived stem cell model of Parkinson’s disease. https://doi.org/10.1101/2023.01.24.525105

  44. Flønes IH, Fernandez-Vizarra E, Lykouri M, Brakedal B, Skeie GO, Miletic H, Lilleng PK, Alves G, Tysnes OB, Haugarvoll K, Dölle C (2018) Neuronal complex I deficiency occurs throughout the Parkinson’s disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathol 135:409–425. https://doi.org/10.1007/s00401-017-1794-7

    Article  PubMed  Google Scholar 

  45. Arkun K, Rice AC, Bennett JP (2015) Effect of Lewy bodies on mitochondrial DNA copy numbers and deletion burden in Parkinson’s disease substantia nigra neurons. J Alzheimers Dis Parkinsonism 5(175):2161–460. https://doi.org/10.4172/2161-0460.1000175

    Article  Google Scholar 

  46. Wilkaniec A, Lenkiewicz AM, Babiec L, Murawska E, Jęśko HM, Cieślik M, Culmsee C, Adamczyk A (2021) Exogenous alpha-synuclein evoked parkin downregulation promotes mitochondrial dysfunction in neuronal cells. Implications for Parkinson’s disease pathology. Front Aging Neurosci 13:591475. https://doi.org/10.3389/fnagi.2021.591475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ay M (2022) Vanillic acid induces mitochondrial biogenesis in SH-SY5Y cells. Mol Biol Rep 49(6):4443–4449. https://doi.org/10.1007/s11033-022-07284-6

    Article  PubMed  CAS  Google Scholar 

  48. Beal MF, Chiluwal J, Calingasan NY, Milne GL, Shchepinov MS, Tapias V (2020) Isotope-reinforced polyunsaturated fatty acids improve Parkinson’s disease-like phenotype in rats overexpressing α-synuclein. Acta Neuropathol Commun 8(1):1–8. https://doi.org/10.1186/s40478-020-01090-6

    Article  CAS  Google Scholar 

  49. Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergström J, Erlandsson A (2017) Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 82:143–156. https://doi.org/10.1016/j.mcn.2017.04.009

    Article  PubMed  CAS  Google Scholar 

  50. Wani WY, Ouyang X, Benavides GA, Redmann M, Cofield SS, Shacka JJ, Chatham JC, Darley-Usmar V, Zhang J (2017) O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson’s disease. Mol Brain 10:1–4. https://doi.org/10.1186/s13041-017-0311-1

    Article  CAS  Google Scholar 

  51. Gui Y-X, Xu Z-P, Lv W et al (2015) Evidence for polymerase gamma, POLG1 variation in reduced mitochondrial DNA copy number in Parkinson’s disease. Parkinsonism Relat Disord 21:282–286. https://doi.org/10.1016/j.parkreldis.2014.12.030

    Article  PubMed  Google Scholar 

  52. Pyle A, Brennan R, Kurzawa-Akanbi M et al (2015) Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early-stage Parkinson’s disease. Ann Neurol 78:1000–1004. https://doi.org/10.1002/ana.24515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 36:125–131. https://doi.org/10.1016/S1673-8527(08)60099-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Martín-Jiménez R, Lurette O, Hebert-Chatelain E (2020) Damage in mitochondrial DNA associated with Parkinson’s disease. DNA Cell Biol 39:1421–1430. https://doi.org/10.1089/dna.2020.5398

    Article  PubMed  CAS  Google Scholar 

  55. Gaweda-Walerych K, Safranow K, Maruszak A et al (2010) Mitochondrial transcription factor A variants and the risk of Parkinson’s disease. Neurosci Lett 469:24–29. https://doi.org/10.1016/j.neulet.2009.11.037

    Article  PubMed  CAS  Google Scholar 

  56. Gatt AP, Jones EL, Francis PT et al (2013) Association of a polymorphism in mitochondrial transcription factor A (TFAM) with Parkinson’s disease dementia but not dementia with Lewy bodies. Neurosci Lett 557 Pt B:177–180. https://doi.org/10.1016/j.neulet.2013.10.045

    Article  PubMed  CAS  Google Scholar 

  57. Ekstrand MI, Falkenberg M, Rantanen A et al (2004) Mitochondrial transcription factor A regulates mtDNA CN in mammals. Hum Mol Genet 13:935–944. https://doi.org/10.1093/hmg/ddh109

    Article  PubMed  CAS  Google Scholar 

  58. Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819:921–929. https://doi.org/10.1016/j.bbagrm.2012.03.002

    Article  PubMed  CAS  Google Scholar 

  59. Ekstrand MI, Terzioglu M, Galter D et al (2007) Progressive parkinsonism in mice with respiratory- chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 104:1325–1330. https://doi.org/10.1073/pnas.0605208103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sörensen L, Ekstrand M, Silva JP et al (2001) Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 21:8082–8090. https://doi.org/10.1523/JNEUROSCI.21-20-08082.2001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang KZQ, Zhu J, Dagda RK et al (2014) ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: implications for Parkinson’s disease. Mitochondrion 17:132–140. https://doi.org/10.1016/j.mito.2014.04.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Good CH, Hoffman AF, Hoffer BJ et al (2011) Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson’s disease. FASEB J 25:1333–1344. https://doi.org/10.1096/fj.10-173625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sterky FH, Lee S, Wibom R et al (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci U S A 108:12937–12942. https://doi.org/10.1073/pnas.1103295108

    Article  PubMed  PubMed Central  Google Scholar 

  64. Iyer M, Subramaniam MD, Venkatesan D et al (2021) Role of RhoA-ROCK signaling in Parkinson’s disease. Eur J Pharmacol 894:173815. https://doi.org/10.1016/j.ejphar.2020.173815

    Article  PubMed  CAS  Google Scholar 

  65. Venugopal A, Sundaramoorthy K, Vellingiri B (2019) Therapeutic potential of Hsp27 in neurological diseases. Egypt J Med Hum Genet 20:21. https://doi.org/10.1186/s43042-019-0023-4

    Article  Google Scholar 

  66. Lindqvist LM, Simon AK, Baehrecke EH (2015) Current questions and possible controversies in autophagy. Cell Death Discov 1:15036. https://doi.org/10.1038/cddiscovery.2015.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939. https://doi.org/10.1016/j.cell.2005.07.002

    Article  PubMed  CAS  Google Scholar 

  68. Yang J, Tang X, Nandakumar KS, Cheng K (2019) Autophagy induced by STING, an unnoticed and primordial function of cGAS. Cell Mol Immunol 16:683–684. https://doi.org/10.1038/s41423-019-0240-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Saha AR, Ninkina NN, Hanger DP et al (2000) Induction of neuronal death by alpha-synuclein. Eur J Neurosci 12:3073–3077. https://doi.org/10.1046/j.1460-9568.2000.00210.x

    Article  PubMed  CAS  Google Scholar 

  70. Stefanova N, Klimaschewski L, Poewe W et al (2001) Glial cell death induced by overexpression of alpha-synuclein. J Neurosci Res 65:432–438. https://doi.org/10.1002/jnr.1171

    Article  PubMed  CAS  Google Scholar 

  71. Kim S, Jeon BS, Heo C et al (2004) Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson’s disease. FASEB J 18:1615–1617. https://doi.org/10.1096/fj.04-1917fje

    Article  PubMed  CAS  Google Scholar 

  72. Yu C-H, Davidson S, Harapas CR et al (2020) TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183:636-649.e18. https://doi.org/10.1016/j.cell.2020.09.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fang C, Wei X, Wei Y (2016) Mitochondrial DNA in the regulation of innate immune responses. Protein Cell 7:11–16. https://doi.org/10.1007/s13238-015-0222-9

    Article  PubMed  CAS  Google Scholar 

  74. Bai J, Liu F (2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes 68:1099–1108. https://doi.org/10.2337/dbi18-0052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sliter DA, Martinez J, Hao L et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–262. https://doi.org/10.1038/s41586-018-0448-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486:235–239. https://doi.org/10.1016/j.neulet.2010.09.061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Grünewald A, Kumar KR, Sue CM (2019) New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 177:73–93. https://doi.org/10.1016/j.pneurobio.2018.09.003

    Article  PubMed  CAS  Google Scholar 

  78. Kyrylenko S, Baniahmad A (2010) Sirtuin family: a link to metabolic signaling and senescence. Curr Med Chem 17:2921–2932. https://doi.org/10.2174/092986710792065009

    Article  PubMed  CAS  Google Scholar 

  79. Gleave JA, Arathoon LR, Trinh D et al (2017) Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism. Neurobiol Dis 106:133–146. https://doi.org/10.1016/j.nbd.2017.06.009

    Article  PubMed  CAS  Google Scholar 

  80. Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639. https://doi.org/10.1016/j.exger.2012.08.007

    Article  PubMed  CAS  Google Scholar 

  81. Park J-H, Burgess JD, Faroqi AH et al (2020) Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener 15:5. https://doi.org/10.1186/s13024-019-0349-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Meng H, Yan W-Y, Lei Y-H et al (2019) SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases. Front Aging Neurosci 11:313. https://doi.org/10.3389/fnagi.2019.00313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Di Maio R, Barrett PJ, Hoffman EK et al (2016) α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8:342ra78. https://doi.org/10.1126/scitranslmed.aaf3634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cao Q, Luo S, Yao W, Qu Y, Wang N, Hong J, Murayama S, Zhang Z, Chen J, Hashimoto K, Qi Q (2022) Suppression of abnormal α-synuclein expression by activation of BDNF transcription ameliorates Parkinson’s disease-like pathology. Mol Ther Nucleic Acids 29:1–5. https://doi.org/10.1016/j.omtn.2022.05.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cárdenas C, Miller RA, Smith I et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283. https://doi.org/10.1016/j.cell.2010.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Goffart S, Wiesner RJ (2003) Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 88:33–40. https://doi.org/10.1113/eph8802500

    Article  PubMed  CAS  Google Scholar 

  87. Srinivasan S, Avadhani NG (2007) Hypoxia-mediated mitochondrial stress in RAW264.7 cells induces osteoclast-like TRAP-positive cells. Ann N Y Acad Sci 1117:51–61. https://doi.org/10.1196/annals.1402.067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Martin LJ, Semenkow S, Hanaford A, Wong M (2014) Mitochondrial permeability transition pore regulates Parkinson’s disease development in mutant α-synuclein transgenic mice. Neurobiol Aging 35:1132–1152. https://doi.org/10.1016/j.neurobiolaging.2013.11.008

    Article  PubMed  CAS  Google Scholar 

  89. Ur Rasheed MS, Tripathi MK, Mishra AK et al (2016) Resveratrol protects from toxin-induced parkinsonism: plethora of proofs hitherto petty translational value. Mol Neurobiol 53:2751–2760. https://doi.org/10.1007/s12035-015-9124-3

    Article  PubMed  CAS  Google Scholar 

  90. Mudò G, Mäkelä J, Di Liberto V et al (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69:1153–1165. https://doi.org/10.1007/s00018-011-0850-z

    Article  PubMed  CAS  Google Scholar 

  91. Zheng B, Liao Z, Locascio JJ et al (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73. https://doi.org/10.1126/scitranslmed.3001059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhang X, Du L, Zhang W et al (2017) Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci Rep 7:9968. https://doi.org/10.1038/s41598-017-07442-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zhou ZD, Xie SP, Saw WT et al (2019) The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in Parkinson’s disease (PD). Cells 8(8):911. https://doi.org/10.3390/cells8080911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ye Q, Huang W, Li D et al (2016) Overexpression of PGC-1α influences mitochondrial signal transduction of dopaminergic neurons. Mol Neurobiol 53:3756–3770. https://doi.org/10.1007/s12035-015-9299-7

    Article  PubMed  CAS  Google Scholar 

  95. Han Y-S, Lee JH, Lee SH (2019) Fucoidan suppresses mitochondrial dysfunction and cell death against 1-methyl-4-phenylpyridinum-induced neuronal cytotoxicity via regulation of PGC-1α expression. Mar Drugs 17(9):518. https://doi.org/10.3390/md17090518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhang L, Hao J, Zheng Y et al (2018) Fucoidan protects dopaminergic neurons by enhancing the mitochondrial function in a rotenone-induced rat model of Parkinson’s disease. Aging Dis 9:590–604. https://doi.org/10.14336/AD.2017.0831

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lin C-Y, Huang Y-N, Fu R-H et al (2021) Promotion of mitochondrial biogenesis via the regulation of PARIS and PGC-1α by parkin as a mechanism of neuroprotection by carnosic acid. Phytomedicine 80:153369. https://doi.org/10.1016/j.phymed.2020.153369

    Article  PubMed  CAS  Google Scholar 

  98. Xi Y, Feng D, Tao K et al (2018) MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta Mol Basis Dis 1864:2859–2870. https://doi.org/10.1016/j.bbadis.2018.05.018

    Article  PubMed  CAS  Google Scholar 

  99. Joniec-Maciejak I, Wawer A, Turzyńska D et al (2018) Octanoic acid prevents reduction of striatal dopamine in the MPTP mouse model of Parkinson’s disease. Pharmacol Rep 70:988–992. https://doi.org/10.1016/j.pharep.2018.04.008

    Article  PubMed  CAS  Google Scholar 

  100. Hasegawa K, Yasuda T, Shiraishi C et al (2016) Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun 7:10943. https://doi.org/10.1038/ncomms10943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jhuo C-F, Hsieh S-K, Chen C-J et al (2020) Teaghrelin protects SH-SY5Y cells against MPP(+)-induced neurotoxicity through activation of AMPK/SIRT1/PGC-1α and ERK1/2 pathways. Nutrients 12(12):3665. https://doi.org/10.3390/nu12123665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kang H, Khang R, Ham S et al (2017) Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget 8:48603–48618. https://doi.org/10.18632/oncotarget.18122

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mäkelä J, Tselykh TV, Kukkonen JP et al (2016) Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons. Neuropharmacology 102:266–275. https://doi.org/10.1016/j.neuropharm.2015.11.020

    Article  PubMed  CAS  Google Scholar 

  104. Sheng X, Yang S, Wen X et al (2021) Neuroprotective effects of Shende’an tablet in the Parkinson’s disease model. Chin Med 16:18. https://doi.org/10.1186/s13020-021-00429-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369. https://doi.org/10.1038/nrc2129

    Article  PubMed  CAS  Google Scholar 

  106. Yang L, Calingasan NY, Thomas B et al (2009) Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS One 4:e5757. https://doi.org/10.1371/journal.pone.0005757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Beal MF (2009) Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S189-194. https://doi.org/10.1016/S1353-8020(09)70812-0

    Article  PubMed  Google Scholar 

  108. Brines ML, Ghezzi P, Keenan S et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531. https://doi.org/10.1073/pnas.97.19.10526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Genc S, Kuralay F, Genc K et al (2001) Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci Lett 298:139–141. https://doi.org/10.1016/s0304-3940(00)01716-x

    Article  PubMed  CAS  Google Scholar 

  110. Signore AP, Weng Z, Hastings T et al (2006) Erythropoietin protects against 6-hydroxydopamine-induced dopaminergic cell death. J Neurochem 96:428–443. https://doi.org/10.1111/j.1471-4159.2005.03587.x

    Article  PubMed  CAS  Google Scholar 

  111. Moreira S, Fonseca I, Nunes MJ et al (2017) Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol 295:77–87. https://doi.org/10.1016/j.expneurol.2017.05.009

    Article  PubMed  CAS  Google Scholar 

  112. Anis E, Zafeer MF, Firdaus F et al (2020) Perillyl alcohol mitigates behavioural changes and limits cell death and mitochondrial changes in unilateral 6-OHDA lesion model of Parkinson’s disease through alleviation of oxidative stress. Neurotox Res 38:461–477. https://doi.org/10.1007/s12640-020-00213-0

    Article  PubMed  CAS  Google Scholar 

  113. Ahuja M, Ammal Kaidery N, Yang L et al (2016) Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson’s-like disease. J Neurosci 36:6332–6351. https://doi.org/10.1523/JNEUROSCI.0426-16.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Chidambaram SB, Bhat A, Ray B et al (2020) Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP(+) intoxicated human neuroblastoma cells (SH- SY5Y). Nutr Neurosci 23:471–480. https://doi.org/10.1080/1028415X.2018.1521088

    Article  PubMed  CAS  Google Scholar 

  115. Denzer I, Münch G, Friedland K (2016) Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds. Pharmacol Res 103:80–94. https://doi.org/10.1016/j.phrs.2015.11.019

    Article  PubMed  CAS  Google Scholar 

  116. Xu D, Duan H, Zhang Z et al (2014) The novel tetramethylpyrazine bis-nitrone (TN-2) protects against MPTP/MPP+-induced neurotoxicity via inhibition of mitochondrial-dependent apoptosis. J Neuroimmune Pharmacol 9:245–258. https://doi.org/10.1007/s11481-013-9514-0

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Indian Council of Medical Research DHR-GIA [grant number: GIA/2019/000276/PRCGIA], Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Balachanar Vellingri and Dhivya Venkatesan contributed to conceptualization of the review. Writing—original draft was performed by Dhivya Venkatesan and Mahalaxmi Iyer. Reviewing and final approval of the article was approved by Arul Narayanasamy, Abilash Valsala Gopalakrishnan, and Balachandar Vellingiri.

Corresponding author

Correspondence to Balachandar Vellingiri.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, D., Iyer, M., Narayanasamy, A. et al. Plausible Role of Mitochondrial DNA Copy Number in Neurodegeneration—a Need for Therapeutic Approach in Parkinson’s Disease (PD). Mol Neurobiol 60, 6992–7008 (2023). https://doi.org/10.1007/s12035-023-03500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03500-x

Keywords

Navigation