Skip to main content

Advertisement

Log in

Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The deimination or citrullination of arginine residues in the polypeptide chain by peptidylarginine deiminase 4 alters the charge state of the polypeptide chain and affects the function of proteins. It is one of the main ways of protein post-translational modifications to regulate its function. Peptidylarginine deiminase 4 is widely expressed in multiple tissues and organs of the body, especially the central nervous system, and regulates the normal development of organisms. The abnormal expression and activation of peptidylarginine deiminase 4 is an important pathological mechanism for the occurrence and development of central nervous system diseases such as multiple sclerosis, Alzheimer’s disease, cerebral ischemia reperfusion injury, and glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wang S, Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochem Biophys Acta 1829:1126–1135

    CAS  PubMed  Google Scholar 

  2. Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277:49562–49568

    Article  CAS  PubMed  Google Scholar 

  3. Jang B, Shin HY, Choi JK, Nguyen DP, Jeong BH, Ishigami A, Maruyama N, Carp RI et al (2011) Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: nuclear localization of PAD2 and membrane fraction-enriched citrullinated proteins. J Neuropathol Exp Neurol 70:116–124

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Chen H, Tang J, Guo Z, Wang Y (2022) Peptidylarginine deiminase and Alzheimer’s disease. Alzheimers Dis 85:473–484

    Article  CAS  Google Scholar 

  6. Anzilotti C, Pratesi F, Tommasi C, Migliorini P (2010) Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 9:158–160

    Article  CAS  PubMed  Google Scholar 

  7. Liu YL, Chiang YH, Liu GY, Hung HC (2011) Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PLoS ONE 6(6):e21314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee CY, Lin CC, Liu YL, Liu GY, Liu JH, Hung HC (2017) Molecular interplay between the dimer interface and the substrate-binding site of human peptidylarginine deiminase 4. Sci Rep 7:42662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu D, Lu Y, Wang Y, Wang Y (2022) PAD4 and its inhibitors in cancer progression and prognosis. Pharmaceutics 14(11):2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deplus R, Denis H, Putmans P, Calonne E, Fourrez M, Yamamoto K, Suzuki A, Fuks F (2014) Citrullination of DNMT3A by PADI4 regulates its stability and controls DNA methylation. Nucleic Acids Res 42:8285–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhai Q, Wang L, Zhao P, Li T (2017) Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin 49:567–572

    Article  CAS  PubMed  Google Scholar 

  12. Li P, Wang D, Yao H, Doret P, Hao G, Shen Q, Qiu H, Zhang X et al (2010) Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29(21):3153–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Beers JJ, Zendman AJ, Raijmakers R, Stammen-Vogelzangs J, Pruijn GJ (2013) Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie 95:299–308

    Article  PubMed  Google Scholar 

  15. Acharya NK, Nagele EP, Han M, Coretti NJ, DeMarshall C, Kosciuk MC, Boulos PA, Nagele RG (2012) Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. J Autoimmun 38:369–380

    Article  CAS  PubMed  Google Scholar 

  16. Brahmajosyula M, Miyake M (2013) Localization and expression of peptidylarginine deiminase 4 (PAD4) in mammalian oocytes and preimplantation embryos. Zygote 21:314–324

    Article  CAS  PubMed  Google Scholar 

  17. Brahmajosyula M, Miyake M (2013) Role of peptidylarginine deiminase 4 (PAD4) in pig parthenogenetic preimplantation embryonic development. Zygote 21:385–393

    Article  CAS  PubMed  Google Scholar 

  18. Pritzker LB, Nguyen TA, Moscarello MA (1999) The developmental expression and activity of peptidylarginine deiminase in the mouse. Neurosci Lett 266:161–164

    Article  CAS  PubMed  Google Scholar 

  19. Hollingsworth TJ, Radic MZ, Beranova-Giorgianni S, Giorgianni F, Wang Y, Iannaccone A (2018) Murine retinal citrullination declines with age and is mainly dependent on peptidyl arginine deiminase 4 (PAD4). Invest Ophthalmol Vis Sci 59:3808–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tu R, Grover HM, Kotra LP (2016) Peptidyl arginine deiminases and neurodegenerative diseases. Curr Med Chem 23:104–114

    Article  CAS  PubMed  Google Scholar 

  21. Faigle W, Cruciani C, Wolski W, Roschitzki B, Puthenparampil M, Tomas-Ojer P, Sellés-Moreno C, Zeis T et al (2019) Brain citrullination patterns and T cell reactivity of cerebrospinal fluid-derived CD4+ T cells in multiple sclerosis. Front Immunol 10:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94:146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood DD, Bilbao JM, O’Connors P, Moscarello MA (1996) Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 40:18–24

    Article  CAS  PubMed  Google Scholar 

  24. Wood DD, Ackerley CA, Van Den Brand B, Zhang L, Raijmakers R, Mastronardi FG, Moscarello MA (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88:354–364

    Article  CAS  PubMed  Google Scholar 

  25. Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, Probert L, Casaccia-Bonnefil P et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387–11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tommasi C, Petit-Teixeira E, Cournu-Rebeix I, Caponi L, Pierlot C, Fontaine B, Cornelis F et al (2006) PADI4 gene in multiple sclerosis: a family-based association study. J Neuroimmunol 177:142–145

    Article  CAS  PubMed  Google Scholar 

  27. Nali LH, Olival GS, Sousa FTG, de Oliveira ACS, Montenegro H, da Silva IT, Dias-Neto E, Naya H et al (2020) Whole transcriptome analysis of multiple Sclerosis patients reveals active inflammatory profile in relapsing patients and downregulation of neurological repair pathways in secondary progressive cases. Mult Scler Relat Disord 44:102243

    Article  PubMed  Google Scholar 

  28. Calabrese R, Zampieri M, Mechelli R, Annibali V, Guastafierro T, Ciccarone F, Coarelli G, Umeton R et al (2012) Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler 18:299–304

    Article  CAS  PubMed  Google Scholar 

  29. Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M (2012) Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 242:60–71

    Article  CAS  PubMed  Google Scholar 

  30. Tillack K, Naegele M, Haueis C, Schippling S, Wandinger KP, Martin R, Sospedra M (2013) Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. J Neuroimmunol 261:108–119

    Article  CAS  PubMed  Google Scholar 

  31. Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P et al (2019) Current and emerging avenues for Alzheimer’s disease drug targets. J Intern Med 286:398–437

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Cao J, Shi Z, Fan W, Liu H, Deng J, Deng J (2018) Experimental study on the neurotoxic effect of β-amyloid on the cytoskeleton of PC12 cells. Int J Mol Med 41:2764–2770

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicholas AP (2013) Dual immunofluorescence study of citrullinated proteins in Alzheimer diseased frontal cortex. Neurosci Lett 545:107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, Murayama S, Asaga H et al (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80:120–128

    Article  CAS  PubMed  Google Scholar 

  35. Mohlake P, Whiteley CG (2010) Arginine metabolising enzymes as therapeutic tools for Alzheimer’s disease: peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides. Mol Neurobiol 41:149–158

    Article  CAS  PubMed  Google Scholar 

  36. Ishigami A, Masutomi H, Handa S, Nakamura M, Nakaya S, Uchida Y, Saito Y, Murayama S et al (2015) Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer’s disease brains. J Neurosci Res 93:1664–1674

    Article  CAS  PubMed  Google Scholar 

  37. Novotny J, Oberdieck P, Titova A, Pelisek J, Chandraratne S, Nicol P, Hapfelmeier A, Joner M et al (2020) Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology 94:e2346–e2360

    Article  CAS  PubMed  Google Scholar 

  38. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107:15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82:223–232

    Article  CAS  PubMed  Google Scholar 

  40. Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A et al (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropatho 129:239–257

    Article  CAS  Google Scholar 

  41. Vallés J, Lago A, Santos MT, Latorre AM, Tembl JI, Salom JB, Nieves C, Moscardó A (2017) Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost 117:1919–1929

    Article  PubMed  Google Scholar 

  42. Mołek P, Ząbczyk M, Malinowski KP, Natorska J, Undas A (2022) Markers of NET formation and stroke risk in patients with atrial fibrillation: association with a prothrombotic state. Thromb Res 213:1–7

    Article  PubMed  Google Scholar 

  43. Asaga H, Ishigami A (2000) Protein deimination in the rat brain: generation of citrulline-containing proteins in cerebrum perfused with oxygen-deprived media. Biomed Res 21:197–205

    Article  CAS  Google Scholar 

  44. Kim SW, Lee H, Lee HK, Kim ID, Lee JK (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 7:94

    Article  PubMed  Google Scholar 

  45. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN (2003) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23:748–755

    Article  PubMed  Google Scholar 

  46. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H et al (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 11:2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lange S, Rocha-Ferreira E, Thei L, Mawjee P, Bennett K, Thompson PR, Subramanian V, Nicholas AP et al (2014) Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem 130:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M, Hinman JD, Dichgans M (2022) Post-stroke cognitive impairment and dementia. Circ Res 130:1252–1271

    Article  CAS  PubMed  Google Scholar 

  49. Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J et al (2021) INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 91:587–600

    Article  CAS  PubMed  Google Scholar 

  50. Zeng H, Fu X, Cai J, Sun C, Yu M, Peng Y, Zhuang J, Chen J et al (2022) Neutrophil extracellular traps may be a potential target for treating early brain injury in subarachnoid hemorrhage. Transl Stroke Res 13:112–131

    Article  CAS  PubMed  Google Scholar 

  51. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  52. Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X et al (2021) Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138:91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang X, Han J (2006) Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45:183–196

    Article  CAS  PubMed  Google Scholar 

  54. Masutomi H, Kawashima S, Kondo Y, Uchida Y, Jang B, Choi EK, Kim YS, Shimokado K et al (2017) Induction of peptidylarginine deiminase 2 and 3 by dibutyryl cAMP via cAMP-PKA signaling in human astrocytoma U-251MG cells. J Neurosci Res 95:1503–1512

    Article  CAS  PubMed  Google Scholar 

  55. Kosgodage US, Uysal-Onganer P, MacLatchy A, Kraev I, Chatterton NP, Nicholas AP, Inal JM, Lange S (2018) Peptidylarginine deiminases post-translationally deiminate prohibitin and modulate extracellular vesicle release and microRNAs in glioblastoma multiforme. Int J Mol Sci 20:103

    Article  PubMed  PubMed Central  Google Scholar 

  56. Uysal-Onganer P, MacLatchy A, Mahmoud R, Kraev I, Thompson PR, Inal JM, Lange S (2020) Peptidylarginine deiminase isozyme-specific PAD2, PAD3 and PAD4 inhibitors differentially modulate extracellular vesicle signatures and cell invasion in two glioblastoma multiforme cell lines. Int J Mol Sci 21:1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dreyton CJ, Jones JE, Knuckley BA, Subramanian V, Anderson ED, Brown SJ, Fernandez-Vega V, Eberhart C, Spicer T, Zuhl AM, Ferguson J, Speers AE, Wang C, Boger DL, Thompson P, Cravatt BF, Hodder P, & Rosen H (2012) Optimization and characterization of a pan protein arginine deiminase (PAD) inhibitor. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US)

  58. Li D, Liu C, Lin J (2015) Theoretical study of the mechanism of protein arginine deiminase 4 (PAD4) inhibition by F-amidine. J Mol Graph Model 55:25–32

    Article  PubMed  Google Scholar 

  59. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115:5413–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV, Hoki C, Alexander MD, Grandhi R et al (2022) Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Investig 132(10):e154225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeng H, Fu X, Cai J, Sun C, Yu M, Peng Y, Zhuang J, Chen J et al (2022) Neutrophil extracellular traps may be a potential target for treating early brain injury in subarachnoid hemorrhage. Transl Stroke Res 13(1):112–131

    Article  CAS  PubMed  Google Scholar 

  62. Yao H, Cao G, Liu Z, Zhao Y, Yan Z, Wang S, Wang Y, Guo Z et al (2022) Inhibition of Netosis with PAD Inhibitor attenuates endotoxin shock induced systemic inflammation. Int J Mol Sci 23(21):13264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li M, Lin C, Deng H, Strnad J, Bernabei L, Vogl DT, Burke JJ, Nefedova Y (2020) A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma. Mol Cancer Ther 19(7):1530–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wizeman JW, Mohan R (2017) Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun 487(1):134–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sarswat A, Wasilewski E, Chakka SK, Bello AM, Caprariello AV, Muthuramu CM, Stys PK, Dunn SE et al (2017) Inhibitors of protein arginine deiminases and their efficacy in animal models of multiple sclerosis. Bioorg Med Chem 25:2643–2656

    Article  CAS  PubMed  Google Scholar 

  66. Tejeda EJC, Bello AM, Wasilewski E, Koebel A, Dunn S, Kotra LP (2017) Noncovalent Protein Arginine Deiminase (PAD) Inhibitors are efficacious in animal models of multiple sclerosis. J Med Chem 60:8876–8887

    Article  CAS  PubMed  Google Scholar 

  67. Wei L, Wasilewski E, Chakka SK, Bello AM, Moscarello MA, Kotra LP (2013) Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. J Med Chem 56:1715–1722

    Article  CAS  PubMed  Google Scholar 

  68. Trabocchi A, Pala N, Krimmelbein I, Menchi G, Guarna A, Sechi M, Dreker T, Scozzafava A et al (2015) Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors. J Enzyme Inhib Med Chem 30:466–471

    Article  CAS  PubMed  Google Scholar 

  69. Bozdag M, Dreker T, Henry C et al (2013) Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorg Med Chem Lett 23:715–719

    Article  CAS  PubMed  Google Scholar 

  70. Bozdag M, Dreker T, Henry C, Tosco P, Vallaro M, Fruttero R, Scozzafava A, Carta F et al (2013) Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Dis Model Mech 6:467–478

    Google Scholar 

  71. Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB (2018) Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int 93:365–374

    Article  CAS  PubMed  Google Scholar 

  72. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21:815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi L, Yao H, Liu Z, Xu M, Tsung A, Wang Y (2020) Endogenous PAD4 in breast cancer cells mediates cancer extracellular chromatin network formation and promotes lung metastasis. Mol Cancer Res 18:735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Henan Province science and technology research and development (232102310495,222102310434), and Innovation and entrepreneurship training program for college students of Henan University (20221014003,20221014008).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final version of the manuscript. HXG and QHA contributed to writing the manuscript. YHH, YSZ, and LW. made the visualization. LW and YW designed and wrote this research.

Corresponding authors

Correspondence to Lai Wang or Yanming Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

All authors agreed on the publication of the current version of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., An, Q., Zhang, Y. et al. Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases. Mol Neurobiol 60, 6748–6756 (2023). https://doi.org/10.1007/s12035-023-03489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03489-3

Keywords

Navigation