Skip to main content

Advertisement

Log in

CREG Protects Retinal Ganglion Cells loss and Retinal Function Impairment Against ischemia-reperfusion Injury in mice via Akt Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Purpose

The irreversible death of retinal ganglion cells (RGCs) plays an important role in the pathogenesis of glaucoma. Cellular repressor of E1A-stimulated genes (CREG), a secreted glycoprotein involved in cellular proliferation and differentiation, has been shown to protect against myocardial and renal ischemia‐reperfusion damage. However, the role of CREG in retinal ischemia-reperfusion injury (RIRI) remains unknown. In this study, we aimed to explore the effect of CREG on RGCs apoptosis after RIRI.

Methods

We used male C57BL/6J mice to establish the RIRI model. Recombinant CREG was injected at 1 day before RIRI. The expression and distribution of CREG were examined by immunofluorescence staining and western blotting. RGCs survival was assessed by immunofluorescence staining of flat-mounted retinas. Retinal apoptosis was measured by the staining of TdT-mediated dUTP nick-end labeling and cleaved caspase-3. Electroretinogram (ERG) analysis and optomotor response were conducted to evaluate retinal function and visual acuity. The expressions of Akt, phospho-Akt (p-Akt), Bax, and Bcl-2 were analyzed by western blotting to determine the signaling pathways of CREG.

Results

We found that CREG expression was decreased after RIRI, and intravitreal injection of CREG attenuated RGCs loss and retinal apoptosis. Besides, the amplitudes of a-wave, b-wave, and photopic negative response (PhNR) in ERG, as well as visual function, were significantly restored after treatment with CERG. Furthermore, intravitreal injection of CREG upregulated p-Akt and Bcl-2 expression and downregulated Bax expression.

Conclusion

Our results demonstrated that CREG protected RGCs from RIRI and alleviated retinal apoptosis by activating Akt signaling. In addition, CREG also improved retinal function and visual acuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data and results used in this study are available from the corresponding author on reasonable request.

References

  1. Wang Z, Wiggs JL, Aung T et al (2022) The genetic basis for adult onset glaucoma: recent advances and future directions. Prog Retin Eye Res 101066. https://doi.org/10.1016/j.preteyeres.2022.101066

  2. Steinmetz JD, Bourne RRA, Briant PS et al (2021) Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to Sight: an analysis for the global burden of Disease Study. Lancet Glob Health 9:e144–e160. https://doi.org/10.1016/s2214-109x(20)30489-7

    Article  CAS  Google Scholar 

  3. Leeman M, Kestelyn P (2019) Glaucoma and blood pressure. Hypertension 73:944–950. https://doi.org/10.1161/HYPERTENSIONAHA.118.11507

    Article  CAS  PubMed  Google Scholar 

  4. Kang JM, Tanna AP (2021) Glaucoma. Med Clin North Am 105:493–510. https://doi.org/10.1016/j.mcna.2021.01.004

    Article  PubMed  Google Scholar 

  5. Artero-Castro A, Rodriguez-Jimenez FJ, Jendelova P et al (2020) Glaucoma as a neurodegenerative Disease caused by intrinsic vulnerability factors. Prog Neurobiol 193:101817. https://doi.org/10.1016/j.pneurobio.2020.101817

    Article  CAS  PubMed  Google Scholar 

  6. Palmhof M, Frank V, Rappard P et al (2019) From Ganglion cell to photoreceptor layer: Timeline of Deterioration in a rat Ischemia/Reperfusion model. Front Cell Neurosci 13:174. https://doi.org/10.3389/fncel.2019.00174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chitranshi N, Dheer Y, Abbasi M et al (2018) Glaucoma pathogenesis and neurotrophins: focus on the Molecular and genetic basis for therapeutic prospects. Curr Neuropharmacol 16:1018–1035. https://doi.org/10.2174/1570159X16666180419121247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adornetto A, Rombola L, Morrone LA et al (2020) Natural Products: evidence for Neuroprotection to be exploited in Glaucoma. Nutrients 12. https://doi.org/10.3390/nu12103158

  9. Veal E, Eisenstein M, Tseng ZH, Gill G (1998) A cellular repressor of E1A-stimulated genes that inhibits activation by E2F. Mol Cell Biol 18:5032–5041. https://doi.org/10.1128/MCB.18.9.5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Veal E, Groisman R, Eisenstein M, Gill G (2000) The secreted glycoprotein CREG enhances differentiation of NTERA-2 human embryonal carcinoma cells. Oncogene 19:2120–2128. https://doi.org/10.1038/sj.onc.1203529

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Tian X, Li Y et al (2016) Up-Regulation of CREG expression by the transcription factor GATA1 inhibits high glucose- and high Palmitate-Induced apoptosis in human umbilical vein endothelial cells. PLoS ONE 11:e0154861. https://doi.org/10.1371/journal.pone.0154861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu ML, Song HX, Tian XX et al (2020) Recombinant Cellular Repressor of E1A-Stimulated genes protects against Renal Fibrosis in Dahl Salt-Sensitive rats. Am J Nephrol 51:401–410. https://doi.org/10.1159/000506411

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Wang W, Wang X et al (2019) Creg in Hepatocytes ameliorates Liver Ischemia/Reperfusion Injury in a TAK1-Dependent manner in mice. Hepatology 69:294–313. https://doi.org/10.1002/hep.30203

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Zhong W, Huang Q et al (2021) GATA3 improves the protective effects of bone marrow-derived mesenchymal stem cells against ischemic stroke induced injury by regulating autophagy through CREG. Brain Res Bull 176:151–160. https://doi.org/10.1016/j.brainresbull.2021.09.001

    Article  CAS  PubMed  Google Scholar 

  15. Peng CF, Han YL, Jie D et al (2011) Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-alpha-induced apoptosis via NF-kappaB in mesenchymal stem cells. Biochem Biophys Res Commun 406:601–607. https://doi.org/10.1016/j.bbrc.2011.02.100

    Article  CAS  PubMed  Google Scholar 

  16. Song H, Yan C, Tian X et al (2017) CREG protects from myocardial ischemia/reperfusion injury by regulating myocardial autophagy and apoptosis. Biochim Biophys Acta Mol Basis Dis 1863:1893–1903. https://doi.org/10.1016/j.bbadis.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  17. Palmhof M, Wagner N, Nagel C et al (2020) Retinal ischemia triggers early microglia activation in the optic nerve followed by neurofilament degeneration. Exp Eye Res 198:108133. https://doi.org/10.1016/j.exer.2020.108133

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Xie F, Yang N et al (2021) Kruppel-like factor 7 protects retinal ganglion cells and promotes functional preservation via activating the akt pathway after retinal ischemia-reperfusion injury. Exp Eye Res 207:108587. https://doi.org/10.1016/j.exer.2021.108587

    Article  CAS  PubMed  Google Scholar 

  19. Yang J, Yang N, Luo J et al (2020) Overexpression of S100A4 protects retinal ganglion cells against retinal ischemia-reperfusion injury in mice. Exp Eye Res 201. https://doi.org/10.1016/j.exer.2020.108281

  20. Mirzayans R, Murray D (2020) Do TUNEL and other apoptosis assays detect cell death in Preclinical Studies? Int J Mol Sci 21. https://doi.org/10.3390/ijms21239090

  21. Yan J, Li Y, Zhang T, Shen Y (2022) Numb deficiency impairs retinal structure and visual function in mice. Exp Eye Res 219:109066. https://doi.org/10.1016/j.exer.2022.109066

    Article  CAS  PubMed  Google Scholar 

  22. Stiles BL (2009) PI-3-K and AKT: onto the mitochondria. Adv Drug Deliv Rev 61:1276–1282. https://doi.org/10.1016/j.addr.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  23. Mathew B, Ravindran S, Liu X et al (2019) Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 197:146–160. https://doi.org/10.1016/j.biomaterials.2019.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan J, Zhang X, Li D et al (2020) scAAV2-Mediated C3 transferase gene therapy in a rat model with retinal Ischemia/Reperfusion injuries. Mol Ther Methods Clin Dev 17:894–903. https://doi.org/10.1016/j.omtm.2020.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang X, Lochner A, Wang H-H et al (2021) Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics 11:6766–6785. https://doi.org/10.7150/thno.60143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fudalej E, Justyniarska M, Kasarello K et al (2021) Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: a review. Ophthalmic Res 64:345–355. https://doi.org/10.1159/000514441

    Article  CAS  PubMed  Google Scholar 

  27. Xu J, Guo Y, Liu Q et al (2022) Pregabalin mediates retinal ganglion cell survival from retinal Ischemia/Reperfusion Injury Via the Akt/GSK3β/β-Catenin signaling pathway. Invest Ophthalmol Vis Sci 63:7. https://doi.org/10.1167/iovs.63.12.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vernazza S, Oddone F, Tirendi S, Bassi AM (2021) Risk factors for retinal ganglion cell distress in Glaucoma and neuroprotective potential intervention. Int J Mol Sci 22. https://doi.org/10.3390/ijms22157994

  29. Wang Y, Jasper H, Toan S et al (2021) Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol 45:102049. https://doi.org/10.1016/j.redox.2021.102049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun D, Wang J, Toan S et al (2022) Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 25:307–329. https://doi.org/10.1007/s10456-022-09835-8

    Article  PubMed  Google Scholar 

  31. Almasieh M, Wilson AM, Morquette B et al (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181. https://doi.org/10.1016/j.preteyeres.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  32. Luo J, He T, Yang J et al (2020) SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice. Graefes Arch Clin Exp Ophthalmol 258:335–344. https://doi.org/10.1007/s00417-019-04580-z

    Article  CAS  PubMed  Google Scholar 

  33. Estaquier J, Vallette F, Vayssiere J-L, Mignotte B (2012) The Mitochondrial Pathways of Apoptosis. In: Advances in Mitochondrial Medicine. pp 157–183

  34. Panchal K, Tiwari AK (2019) Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 47:151–173. https://doi.org/10.1016/j.mito.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  35. Popgeorgiev N, Sa JD, Jabbour L et al (2020) Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci Adv 6. https://doi.org/10.1126/sciadv.abc4149

  36. Luo H, Zhuang J, Hu P et al (2018) Resveratrol Delays Retinal Ganglion Cell loss and attenuates gliosis-related inflammation from Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 59:3879–3888. https://doi.org/10.1167/iovs.18-23806

    Article  CAS  PubMed  Google Scholar 

  37. Chen D, Zhang Y, Ji L, Wu Y (2022) CREG mitigates neonatal HIE injury through survival promotion and apoptosis inhibition in hippocampal neurons via activating AKT signaling. Cell Biol Int 46:849–860. https://doi.org/10.1002/cbin.11777

    Article  CAS  PubMed  Google Scholar 

  38. McAnany JJ, Persidina OS, Park JC (2022) Clinical electroretinography in diabetic retinopathy: a review. Surv Ophthalmol 67:712–722. https://doi.org/10.1016/j.survophthal.2021.08.011

    Article  PubMed  Google Scholar 

  39. Wilsey LJ, Fortune B (2016) Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol 27:118–124. https://doi.org/10.1097/ICU.0000000000000241

    Article  PubMed  PubMed Central  Google Scholar 

  40. Matei N, Leahy S, Blair NP, Shahidi M (2021) Assessment of retinal oxygen metabolism, visual function, thickness and degeneration markers after variable ischemia/reperfusion in rats. Exp Eye Res 213:108838. https://doi.org/10.1016/j.exer.2021.108838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang TZ, Hua T, Han LK et al (2018) Antiapoptotic role of the cellular repressor of E1A-stimulated genes (CREG) in retinal photoreceptor cells in a rat model of light-induced retinal injury. Biomed Pharmacother 103:1355–1361. https://doi.org/10.1016/j.biopha.2018.04.081

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, McDowell CM, Zhang Z et al (2014) Monitoring retinal morphologic and functional changes in mice following Optic nerve crush. Investig Opthalmology Vis Sci 55:3766. https://doi.org/10.1167/iovs.14-13895

    Article  Google Scholar 

  43. Sarossy M, Crowston J, Kumar D et al (2021) Prediction of glaucoma severity using parameters from the electroretinogram. Sci Rep 11:23886. https://doi.org/10.1038/s41598-021-03421-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grillo SL, Montgomery CL, Johnson HM, Koulen P (2018) Quantification of changes in visual function during Disease Development in a mouse model of pigmentary Glaucoma. J Glaucoma 27:828–841. https://doi.org/10.1097/IJG.0000000000001024

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grillo SL, Koulen P (2015) Psychophysical testing in rodent models of glaucomatous optic neuropathy. Exp Eye Res 141:154–163. https://doi.org/10.1016/j.exer.2015.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feola AJ, Fu J, Allen R et al (2019) Menopause exacerbates visual dysfunction in experimental glaucoma. Exp Eye Res 186:107706. https://doi.org/10.1016/j.exer.2019.107706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jiayi Yang, Xiao Zhang, Ying Li, and Lina Pan for their constructive suggestions.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

S.Z and L.D designed the study and conducted the experiments. G.L and Y.X reviewed and revised the manuscript. All authors have approved the final article and agree with submission of the manuscript.

Corresponding author

Correspondence to Yiqiao Xing.

Ethics declarations

Competing Interests

The authors have no relevant financial interests to disclose.

Ethics Approval and Consent to Participate

This study was performed in line with the principles of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Approval was granted by the Ethics Committee of the Renmin Hospital of Wuhan University.

Consent for Publication

All authors have given their consent to publish this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Du, L., Lu, G. et al. CREG Protects Retinal Ganglion Cells loss and Retinal Function Impairment Against ischemia-reperfusion Injury in mice via Akt Signaling Pathway. Mol Neurobiol 60, 6018–6028 (2023). https://doi.org/10.1007/s12035-023-03466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03466-w

Keywords

Navigation