Skip to main content

Advertisement

Log in

ALPK1 Expressed in IB4-Positive Neurons of Mice Trigeminal Ganglions Promotes MIA-Induced TMJ pain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pain is one of the main reasons for patients with temporomandibular joint (TMJ) disorders seeking medical care. However, there is no effective treatment yet as its mechanism remains unclear. Herein, we found that the injection of monoiodoacetate (MIA) into mice TMJs can induce typical joint pain as early as 3 days, accompanied by an increased percentage of calcitonin gene-related peptide positive (CGRP+) neurons and isolectin B4 positive (IB4+) in the trigeminal ganglions (TGs). Our previous study has discovered that alpha-kinase 1 (ALPK1) may be involved in joint pain. Here, we detected the expression of ALPK1 in neurons of TGs in wild-type (WT) mice, and it was upregulated after intra-TMJ injection of MIA. Meanwhile, the increased percentage of neurons in TGs expressing ALPK1 and CGRP or ALPK1 and IB4 was also demonstrated by the immunofluorescent double staining. Furthermore, after the MIA injection, ALPK1−/− mice exhibited attenuated pain behavior, as well as a remarkably decreased percentage of IB4+ neurons and an unchanged percentage of CGRP+ neurons, as compared with WT mice. In vitro assay showed that the value of calcium intensity was weakened in Dil+ neurons from ALPK1−/− mice of TMJ pain induced by the MIA injection, in relation to those from WT mice, while it was significantly enhanced with the incubation of recombinant human ALPK1 (rhA). Taken together, these results suggest that ALPK1 promotes mice TMJ pain induced by MIA through upregulation of the sensitization of IB4+ neurons in TGs. This study will provide a new potential therapeutic target for the treatment of TMJ pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the [NAME] repository [PERSISTENT LINK TO DATASETS].

References

  1. Auerbach SM, Laskin DM, Frantsve LM, Orr T (2001) Depression, pain, exposure to stressful life events, and long-term outcomes in temporomandibular disorder patients. J Oral Maxillofac Surg 59 (6):628–633; discussion 634. https://doi.org/10.1053/joms.2001.23371

  2. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, List T, Svensson P et al (2014) Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J Oral Facial Pain Headache 28(1):6–27. https://doi.org/10.11607/jop.1151

    Article  PubMed  PubMed Central  Google Scholar 

  3. Slade GD, Ohrbach R, Greenspan JD, Fillingim RB, Bair E, Sanders AE, Dubner R, Diatchenko L, et al (2016) Painful temporomandibular disorder: decade of discovery from OPPERA studies. J Dent Res 95(10):1084–1092. https://doi.org/10.1177/0022034516653743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Zhang J, Gan Y, Zhou Y (2015) Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res 94(5):666–673. https://doi.org/10.1177/0022034515574770

    Article  CAS  PubMed  Google Scholar 

  5. O’Neil C, Hanlon J, Marcum Z (2012) Adverse effects of analgesics commonly used by older adults with osteoarthritis: focus on non-opioid and opioid analgesics. Am J Geriatr Pharmacother 10(6):331–342. https://doi.org/10.1016/j.amjopharm.2012.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curiel R, Katz J (2013) Mitigating the cardiovascular and renal effects of NSAIDs. Pain medicine (Malden, Mass):S23–28. https://doi.org/10.1111/pme.12275

  7. Basso L, Serhan N, Tauber M, Gaudenzio N (2019) Peripheral neurons: master regulators of skin and mucosal immune response. Eur J Immunol 49(11):1984–1997. https://doi.org/10.1002/eji.201848027

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, Lay M, Chang W, et al (2017) PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat Neurosci 20(7):917–926. https://doi.org/10.1038/nn.4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang H, Xu L, Liu W, Xiao M, Ke J, Long X (2022) Chronic pain causes peripheral and central responses in MIA-induced TMJOA rats. Cell Mol Neurobiol 42(5):1441–1451. https://doi.org/10.1007/s10571-020-01033-8

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez P, Green PG, Levine JD (2014) Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain 155(6):1161–1167. https://doi.org/10.1016/j.pain.2014.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bautzova T, Hockley JRF, Perez-Berezo T, Pujo J, Tranter MM, Desormeaux C, Barbaro MR, Basso L, et al (2018) 5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein-coupled receptor D. Sci Signal 11 (561). https://doi.org/10.1126/scisignal.aal2171

  12. Ye Y, Bae SS, Viet CT, Troob S, Bernabé D, Schmidt BL (2014) IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma. Behav Brain Funct 10:5. https://doi.org/10.1186/1744-9081-10-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. La Hausse De Lalouviere L, Morice O, Fitzgerald M (2021) Altered sensory innervation and pain hypersensitivity in a model of young painful arthritic joints: short- and long-term effects. Inflamm Res 70(4):483–493. https://doi.org/10.1007/s00011-021-01450-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyamoto S, Nakamura J, Ohtori S, Orita S, Nakajima T, Omae T, Hagiwara S, Takazawa M, et al (2017) Pain-related behavior and the characteristics of dorsal-root ganglia in a rat model of hip osteoarthritis induced by mono-iodoacetate. J Orthop Res 35(7):1424–1430. https://doi.org/10.1002/jor.23395

    Article  CAS  PubMed  Google Scholar 

  15. Rees T, Hendrikse E, Hay D, Walker C (2022) Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 179(3):381–399. https://doi.org/10.1111/bph.15605

    Article  CAS  PubMed  Google Scholar 

  16. Xu ZZ, Kim YH, Bang S, Zhang Y, Berta T, Wang F, Oh SB, Ji RR (2015) Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med 21(11):1326–1331. https://doi.org/10.1038/nm.3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu X, Zhou X, Du J, Liu X, Qing L, Johnson BN, Jia X (2021) Macrophage activation in the dorsal root ganglion in rats developing autotomy after peripheral nerve injury. Int J Mol Sci 22 (23). https://doi.org/10.3390/ijms222312801

  18. Gong L, Gao F, Li J, Li J, Yu X, Ma X, Zheng W, Cui S, Let al (2015) Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca(2+)/nNOS/NO/KATP pathway. Neuroscience 289:417–428. https://doi.org/10.1016/j.neuroscience.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Albers K, Gold M (2015) Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat. Neuroscience 284:483–499. https://doi.org/10.1016/j.neuroscience.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Jiang H, Liu X, Hu S, Li H, Feng Y, Ke J, Long X (2022) Melatonin abates TMJOA chronic pain by MTR in trigeminal ganglion neurons. J Dent Res 101(1):111–119. https://doi.org/10.1177/00220345211026551

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Zhao J, Jiang H, Li H, Feng Y, Ke J, Long X (2022) ALPK1 Aggravates TMJOA cartilage degradation via NF-κB and ERK1/2 signaling. J Dent Res:220345221100179. https://doi.org/10.1177/00220345221100179

  22. Liu X, Zhao J, Jiang H, Guo H, Li Y, Li H, Feng Y, Ke J, et al (2022) ALPK1 accelerates the pathogenesis of osteoarthritis by activating NLRP3 signaling. J Bone Miner Res. https://doi.org/10.1002/jbmr.4669

    Article  PubMed  Google Scholar 

  23. Xiao M, Hu Z, Jiang H, Li C, Guo H, Fang W, Long X (2021) The expression of Netrin-1 in the MIA-induced osteoarthritic temporomandibular joint in mice. Sci Rep 11(1):15695. https://doi.org/10.1038/s41598-021-95251-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller R, Kim Y, Tran P, Ishihara S, Dong X, Miller R, Malfait A (2018) Visualization of peripheral neuron sensitization in a surgical mouse model of osteoarthritis by in vivo calcium imaging. Arthritis & rheumatology (Hoboken, NJ) 70(1):88–97. https://doi.org/10.1002/art.40342

    Article  CAS  Google Scholar 

  25. Jain A, Sharma D, Suhalka P, Sukhwal P, Bhatnagar M (2013) Changes in the density of nitrergic neurons in the hippocampus of rats following kainic acid and melatonin administration. Physiol Res 62(2):197–203. https://doi.org/10.33549/physiolres.932295

    Article  CAS  PubMed  Google Scholar 

  26. Kuniyoshi K, Ohtori S, Ochiai N, Murata R, Matsudo T, Yamada T, Ochiai SS, Moriya H, et al (2007) Characteristics of sensory DRG neurons innervating the wrist joint in rats. Eur J Pain 11(3):323–328. https://doi.org/10.1016/j.ejpain.2006.05.003

    Article  PubMed  Google Scholar 

  27. Aso K, Ikeuchi M, Izumi M, Sugimura N, Kato T, Ushida T, Tani T (2014) Nociceptive phenotype of dorsal root ganglia neurons innervating the subchondral bone in rat knee joints. Eur J Pain 18(2):174–181. https://doi.org/10.1002/j.1532-2149.2013.00360.x

    Article  CAS  PubMed  Google Scholar 

  28. Tang Q, Huang Y, Zhu L, Zhang W, Zhao Y, Zhong Y (2022) The effect of melatonin on radicular pain in a rat model of lumbar disc herniation. Spine (Phila Pa 1976) 47(10):754–763. https://doi.org/10.1097/brs.0000000000004329

    Article  PubMed  Google Scholar 

  29. Tsuboi Y, Honda K, Bae YC, Shinoda M, Kondo M, Katagiri A, Echizenya S, Kamakura S, et al (2015) Morphological and functional changes in regenerated primary afferent fibres following mental and inferior alveolar nerve transection. Eur J Pain 19(9):1258–1266. https://doi.org/10.1002/ejp.650

    Article  CAS  PubMed  Google Scholar 

  30. Wang S, Tu H, Ko A, Chiang S, Chiou S, Lee S, Tsai Y, Lee C, et al (2011) Lymphocyte α-kinase is a gout-susceptible gene involved in monosodium urate monohydrate-induced inflammatory responses. J Mol Med (Berl) 89(12):1241–1251. https://doi.org/10.1007/s00109-011-0796-5

    Article  CAS  PubMed  Google Scholar 

  31. Lee CP, Chiang SL, Ko AM, Liu YF, Ma C, Lu CY, Huang CM, Chang JG, et al (2016) ALPK1 phosphorylates myosin IIA modulating TNF-α trafficking in gout flares. Sci Rep 6:25740. https://doi.org/10.1038/srep25740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai Q, Liu S, Shu H, Tang Y, George S, Dong T, Schmidt BL, Tao F (2019) TNFα in the trigeminal nociceptive system is critical for temporomandibular joint pain. Mol Neurobiol 56(1):278–291. https://doi.org/10.1007/s12035-018-1076-y

    Article  CAS  PubMed  Google Scholar 

  33. Tarpley JW, Kohler MG, Martin WJ (2004) The behavioral and neuroanatomical effects of IB4-saporin treatment in rat models of nociceptive and neuropathic pain. Brain Res 1029(1):65–76. https://doi.org/10.1016/j.brainres.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  34. Vulchanova L, Olson TH, Stone LS, Riedl MS, Elde R, Honda CN (2001) Cytotoxic targeting of isolectin IB4-binding sensory neurons. Neuroscience 108(1):143–155. https://doi.org/10.1016/s0306-4522(01)00377-3

    Article  CAS  PubMed  Google Scholar 

  35. Pinto LG, Souza GR, Kusuda R, Lopes AH, Sant’Anna MB, Cunha FQ, Ferreira SH, Cunha TM (2019) Non-peptidergic nociceptive neurons are essential for mechanical inflammatory hypersensitivity in mice. Mol Neurobiol 56(8):5715–5728. https://doi.org/10.1007/s12035-019-1494-5

    Article  CAS  PubMed  Google Scholar 

  36. Weisshaar CL, Kras JV, Pall PS, Kartha S, Winkelstein BA (2017) Ablation of IB4 non-peptidergic afferents in the rat facet joint prevents injury-induced pain and thalamic hyperexcitability via supraspinal glutamate transporters. Neurosci Lett 655:82–89. https://doi.org/10.1016/j.neulet.2017.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532. https://doi.org/10.1038/nature04886

    Article  CAS  PubMed  Google Scholar 

  38. Quirion B, Beaulieu C, Côté L, Parent JL, Gendron L (2022) Distribution of delta and mu opioid receptor mRNA in rodent dorsal root ganglia neurons. Eur J Neurosci 56(3):4031–4044. https://doi.org/10.1111/ejn.15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shiers SI, Sankaranarayanan I, Jeevakumar V, Cervantes A, Reese JC, Price TJ (2021) Convergence of peptidergic and non-peptidergic protein markers in the human dorsal root ganglion and spinal dorsal horn. J Comp Neurol 529(10):2771–2788. https://doi.org/10.1002/cne.25122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. https://doi.org/10.1146/annurev.physiol.70.113006.100630

    Article  CAS  PubMed  Google Scholar 

  41. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212. https://doi.org/10.1038/nature11010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  43. He JJ, Wang X, Liang C, Yao X, Zhang ZS, Yang RH, Fang D (2020) Wnt5b/Ryk-mediated membrane trafficking of P2X3 receptors contributes to bone cancer pain. Exp Neurol 334:113482. https://doi.org/10.1016/j.expneurol.2020.113482

    Article  CAS  PubMed  Google Scholar 

  44. Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, et al (2022) Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 25(9):104936. https://doi.org/10.1016/j.isci.2022.104936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bigiani A, Tirindelli R, Bigiani L, Mapelli J (2022) Changes of the biophysical properties of voltage-gated Na currents during maturation of the sodium-taste cells in rat fungiform papillae. J Physiol. https://doi.org/10.1113/jp283636

    Article  PubMed  Google Scholar 

  46. Grundy L, Tay C, Christie S, Harrington A, Castro J, Cardoso F, Lewis R, Zagorodnyuk V, et al (2022) The T type calcium channel CaV3.2 regulates bladder afferent responses to mechanical stimuli. Pain. https://doi.org/10.1097/j.pain.0000000000002795

    Article  PubMed  PubMed Central  Google Scholar 

  47. Piccialli I, Sisalli M, de Rosa V, Boscia F, Tedeschi V, Secondo A, Pannaccione A (2022) Increased K2.1 channel clustering underlies the reduction of delayed rectifier K currents in hippocampal neurons of the Tg2576 Alzheimer’s disease mouse. Cells 11 (18). https://doi.org/10.3390/cells11182820

  48. Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, Saijilafu YL, He S, et al (2016) Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 91(5):1085–1096. https://doi.org/10.1016/j.neuron.2016.07.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Behrendt M, Solinski H, Schmelz M, Carr R (2022) Bradykinin-induced sensitization of transient receptor potential channel melastatin 3 calcium responses in mouse nociceptive neurons. Front Cell Neurosci 16:843225. https://doi.org/10.3389/fncel.2022.843225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Michot B, Casey S, Gibbs J (2021) Effects of CGRP-primed dental pulp stem cells on trigeminal sensory neurons. J Dent Res 100(11):1273–1280. https://doi.org/10.1177/00220345211004872

    Article  CAS  PubMed  Google Scholar 

  51. Gao X, Han S, Huang Q, He SQ, Ford NC, Zheng Q, Chen Z, Yu S, et al (2021) Calcium imaging in population of dorsal root ganglion neurons unravels novel mechanisms of visceral pain sensitization and referred somatic hypersensitivity. Pain 162(4):1068–1081. https://doi.org/10.1097/j.pain.0000000000002096

    Article  CAS  PubMed  Google Scholar 

  52. Andres-Bilbe A, Castellanos A, Pujol-Coma A, Callejo G, Comes N, Gasull X (2020) The background K(+) channel TRESK in sensory physiology and pain. Int J Mol Sci 21 (15). https://doi.org/10.3390/ijms21155206

  53. Ocaña M, Cendán CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 500(1–3):203–219. https://doi.org/10.1016/j.ejphar.2004.07.026

    Article  CAS  PubMed  Google Scholar 

  54. Verkest C, Häfner S, Ávalos Prado P, Baron A, Sandoz G (2021) Migraine and two-pore-domain potassium channels. Neuroscientist 27(3):268–284. https://doi.org/10.1177/1073858420940949

    Article  CAS  PubMed  Google Scholar 

  55. van Gassen KL, Netzeband JG, de Graan PN, Gruol DL (2005) The chemokine CCL2 modulates Ca2+ dynamics and electrophysiological properties of cultured cerebellar Purkinje neurons. Eur J Neurosci 21(11):2949–2957. https://doi.org/10.1111/j.1460-9568.2005.04113.x

    Article  PubMed  Google Scholar 

  56. Puma C, Danik M, Quirion R, Ramon F, Williams S (2001) The chemokine interleukin-8 acutely reduces Ca(2+) currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J Neurochem 78(5):960–971. https://doi.org/10.1046/j.1471-4159.2001.00469.x

    Article  CAS  PubMed  Google Scholar 

  57. Park KM, Yule DI, Bowers WJ (2010) Impaired TNF-alpha control of IP3R-mediated Ca2+ release in Alzheimer’s disease mouse neurons. Cell Signal 22(3):519–526. https://doi.org/10.1016/j.cellsig.2009.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from microscopy facilities at the State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University. This work was financially supported by the Cultivation Project of the National Natural Science Foundation of Guangdong Maternal and Child Health Hospital (No. YN2017G13), National Natural Science Foundation of China 82101042 (H.M. Li), Natural Science Foundation of Hubei Province of China (2021CFB107), and the Fundamental Research Funds for the Central Universities (2042021kf0176).

Funding

The authors acknowledge the support from microscopy facilities at the State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University. This work was financially supported by the cultivation Project of the National Natural Science Foundation of Guangdong Maternal and Child Health Hospital(No. YN2017G13), National Natural Science Foundation of China 82101042 (H.M. Li), Natural Science Foundation of Hubei Province of China (2021CFB107), and the Fundamental Research Funds for the Central Universities (2042021kf0176).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Taomin Zhu, Huimin Li, and Yuxiang Chen. Design of the study, Interpretation, and analysis of data were performed by Xueke Jia, Xiaohan Ma, Xin Liu, and Yaping Feng. Jin Ke contributed to the preparation and design of this study and made critical revisions to the important intellectual content. The first draft of the manuscript was written by Taomin Zhu and Jin Ke, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin Ke.

Ethics declarations

Ethics Approval

No human subject was involved in this study. All animal studies were performed in accordance with the National Guidelines for Housing and Care of Laboratory Animals and were approved by the Ethics Committee for Animal Research, School and Hospital of Stomatology, Wuhan University, China (S07921060L).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Li, H., Chen, Y. et al. ALPK1 Expressed in IB4-Positive Neurons of Mice Trigeminal Ganglions Promotes MIA-Induced TMJ pain. Mol Neurobiol 60, 6264–6274 (2023). https://doi.org/10.1007/s12035-023-03462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03462-0

Keywords

Navigation