Skip to main content

Advertisement

Log in

Transcription Factor BCL11A Regulates Schwann Cell Behavior During Peripheral Nerve Regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nerve injury-induced Schwann cell dedifferentiation helps to construct a favorable microenvironment for axon growth. Transcription factors regulate cell reprogramming and thus may be critical for Schwann cell phenotype switch during peripheral nerve regeneration. Here, we show that transcription factor B-cell lymphoma/leukemia 11A (BCL11A) is up-regulated in Schwann cells of injured peripheral nerves. Bcl11a silencing suppresses Schwann cell viability, decreases Schwann cell proliferation and migration rates, and impairs the debris clearance ability of Schwann cells. Reduced Bcl11a in injured peripheral nerves results in restricted axon elongation and myelin wrapping, leading to recovery failure. Mechanistically, we demonstrate that BCL11A may mediate Schwann cell activity through binding to the promoter of nuclear receptor subfamily 2 group F member 2 (Nr2f2) and regulating Nr2f2 expression. Collectively, we conclude that BCL11A is essential for Schwann cell activation and peripheral nerve regeneration, providing a potential therapeutic target for the treatment of peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Weiss T, Taschner-Mandl S, Janker L, Bileck A, Rifatbegovic F, Kromp F, Sorger H, Kauer MO et al (2021) Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 12(1):1624. https://doi.org/10.1038/s41467-021-21859-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clements MP, Byrne E, Camarillo Guerrero LF, Cattin AL, Zakka L, Ashraf A, Burden JJ, Khadayate S et al (2017) The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96(1):98–114.e117. https://doi.org/10.1016/j.neuron.2017.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 77(20):3977–3989. https://doi.org/10.1007/s00018-020-03516-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Min Q, Parkinson DB, Dun XP (2021) Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 69(2):235–254. https://doi.org/10.1002/glia.23892

    Article  PubMed  Google Scholar 

  5. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531. https://doi.org/10.1113/jp270874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425. https://doi.org/10.1038/nrm.2016.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arthur-Farraj PJ, Morgan CC, Adamowicz M, Gomez-Sanchez JA, Fazal SV, Beucher A, Razzaghi B, Mirsky R et al (2017) Changes in the coding and non-coding transcriptome and DNA methylome that define the Schwann cell repair phenotype after nerve injury. Cell Rep 20(11):2719–2734. https://doi.org/10.1016/j.celrep.2017.08.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Zhao Q, Chen Q, Xu L, Yi S (2023) Transcriptional control of peripheral nerve regeneration. Mol Neurobiol 60(1):329–341. https://doi.org/10.1007/s12035-022-03090-0

    Article  CAS  PubMed  Google Scholar 

  9. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B et al (2012) c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75(4):633–647. https://doi.org/10.1016/j.neuron.2012.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jessen KR, Mirsky R (2021) The role of c-Jun and autocrine signaling loops in the control of repair Schwann cells and regeneration. Front Cell Neurosci 15:820216. https://doi.org/10.3389/fncel.2021.820216

    Article  CAS  PubMed  Google Scholar 

  11. Dun XP, Carr L, Woodley PK, Barry RW, Drake LK, Mindos T, Roberts SL, Lloyd AC et al (2019) Macrophage-derived Slit3 controls cell migration and axon pathfinding in the peripheral nerve bridge. Cell Rep 26(6):1458–1472.e1454. https://doi.org/10.1016/j.celrep.2018.12.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le N, Nagarajan R, Wang JY, Araki T, Schmidt RE, Milbrandt J (2005) Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci U S A 102(7):2596–2601. https://doi.org/10.1073/pnas.0407836102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J et al (2018) The human transcription factors. Cell 172(4):650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  14. Shaw TJ, Martin P (2016) Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 42:29–37. https://doi.org/10.1016/j.ceb.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193. https://doi.org/10.1038/nrm.2016.8

    Article  CAS  PubMed  Google Scholar 

  16. Yi S, Tang X, Yu J, Liu J, Ding F, Gu X (2017) Microarray and qPCR analyses of wallerian degeneration in rat sciatic nerves. Front Cell Neurosci 11:22. https://doi.org/10.3389/fncel.2017.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiegreffe C, Simon R, Peschkes K, Kling C, Strehle M, Cheng J, Srivatsa S, Liu P et al (2015) Bcl11a (Ctip1) controls migration of cortical projection neurons through regulation of Sema3c. Neuron 87(2):311–325. https://doi.org/10.1016/j.neuron.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  18. Yi S, Zhang H, Gong L, Wu J, Zha G, Zhou S, Gu X, Yu B (2015) Deep sequencing and bioinformatic analysis of lesioned sciatic nerves after crush injury. PloS One 10(12):e0143491. https://doi.org/10.1371/journal.pone.0143491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Q, Liu Q, Zhang Y, Li S, Yi S (2021) Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death Dis 12(5):417. https://doi.org/10.1038/s41419-021-03706-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S (2022) Dysregulated miR-29a-3p/PMP22 modulates Schwann cell proliferation and migration during peripheral nerve regeneration. Mol Neurobiol 59(2):1058–1072. https://doi.org/10.1007/s12035-021-02589-2

    Article  CAS  PubMed  Google Scholar 

  21. Bain JR, Mackinnon SE, Hunter DA (1989) Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83(1):129–138. https://doi.org/10.1097/00006534-198901000-00024

    Article  CAS  PubMed  Google Scholar 

  22. Sun L, Dong S, Ge Y, Fonseca JP, Robinson ZT, Mysore KS, Mehta P (2019) DiVenn: an interactive and integrated web-based visualization tool for comparing gene lists. Front Genet 10:421. https://doi.org/10.3389/fgene.2019.00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Zhang F, Zhang Y, Shan Q, Liu W, Zhang F, Zhang F, Yi S (2021) Betacellulin regulates peripheral nerve regeneration by affecting Schwann cell migration and axon elongation. Mol Med 27(1):27. https://doi.org/10.1186/s10020-021-00292-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi S, Wang QH, Zhao LL, Qin J, Wang YX, Yu B, Zhou SL (2017) miR-30c promotes Schwann cell remyelination following peripheral nerve injury. Neural Regen Res 12(10):1708–1715. https://doi.org/10.4103/1673-5374.217351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang F, Gu X, Yi S, Xu H (2019) Dysregulated transcription factor TFAP2A after peripheral nerve injury modulated Schwann cell phenotype. Neurochem Res 44(12):2776–2785. https://doi.org/10.1007/s11064-019-02898-y

    Article  CAS  PubMed  Google Scholar 

  26. John A, Brylka H, Wiegreffe C, Simon R, Liu P, Jüttner R, Crenshaw EB 3rd, Luyten FP et al (2012) Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Development 139(10):1831–1841. https://doi.org/10.1242/dev.072850

    Article  CAS  PubMed  Google Scholar 

  27. Yin J, Xie X, Ye Y, Wang L, Che F (2019) BCL11A: a potential diagnostic biomarker and therapeutic target in human diseases. Biosci Rep 39(11):BSR20190604. https://doi.org/10.1042/bsr20190604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai YD, Zhang S, Zhang YH, Pan X, Feng K, Chen L, Huang T, Kong X (2018) Identification of the gene expression rules that define the subtypes in glioma. J Clin Med 7(10):350. https://doi.org/10.3390/jcm7100350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Estruch SB, Buzón V, Carbó LR, Schorova L, Lüders J, Estébanez-Perpiñá E (2012) The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function. PloS One 7(6):e37963. https://doi.org/10.1371/journal.pone.0037963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lazarus KA, Hadi F, Zambon E, Bach K, Santolla MF, Watson JK, Correia LL, Das M et al (2018) BCL11A interacts with SOX2 to control the expression of epigenetic regulators in lung squamous carcinoma. Nat Commun 9(1):3327. https://doi.org/10.1038/s41467-018-05790-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY (2019) AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res 47(D1):D33–D38. https://doi.org/10.1093/nar/gky822

    Article  CAS  PubMed  Google Scholar 

  32. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J et al (2017) Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 45(D1):D658–D662. https://doi.org/10.1093/nar/gkw983

    Article  CAS  PubMed  Google Scholar 

  33. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, Chen CH, Brown M et al (2019) Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res 47(D1):D729–d735. https://doi.org/10.1093/nar/gky1094

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, Keles S, Svaren J (2015) Differential Sox10 genomic occupancy in myelinating glia. Glia 63(11):1897–1914. https://doi.org/10.1002/glia.22855

    Article  PubMed  PubMed Central  Google Scholar 

  35. Decker L, Desmarquet-Trin-Dinh C, Taillebourg E, Ghislain J, Vallat JM, Charnay P (2006) Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 26(38):9771–9779. https://doi.org/10.1523/jneurosci.0716-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sock E, Wegner M (2019) Transcriptional control of myelination and remyelination. Glia 67(11):2153–2165. https://doi.org/10.1002/glia.23636

    Article  PubMed  Google Scholar 

  37. Jiang Y, Liu X, Shen R, Gu X, Qian W (2021) Fbxo21 regulates the epithelial-to-mesenchymal transition through ubiquitination of Nr2f2 in gastric cancer. J Cancer 12(5):1421–1430. https://doi.org/10.7150/jca.49674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Nie L, Wu L, Liu Q, Guo X (2017) NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21. Biochem Biophys Res Commun 485(1):181–188. https://doi.org/10.1016/j.bbrc.2017.02.049

    Article  CAS  PubMed  Google Scholar 

  39. Xia B, Hou L, Kang H, Chang W, Liu Y, Zhang Y, Ding Y (2020) NR2F2 plays a major role in insulin-induced epithelial-mesenchymal transition in breast cancer cells. BMC Cancer 20(1):626. https://doi.org/10.1186/s12885-020-07107-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klatt Shaw D, Saraswathy VM, Zhou L, McAdow AR, Burris B, Butka E, Morris SA, Dietmann S et al (2021) Localized EMT reprograms glial progenitors to promote spinal cord repair. Dev Cell 56(5):613–626.e617. https://doi.org/10.1016/j.devcel.2021.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  43. Jessen KR, Arthur-Farraj P (2019) Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 67(3):421–437. https://doi.org/10.1002/glia.23532

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX21_3076] and the Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD].

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Y.S. designed and performed major experiments, analyzed, and interpreted experimental data. L.Z. and Q.Z. assisted with experiments and data interpretation. L.Z. and S.Y. conceived the project and wrote the manuscript.

Corresponding authors

Correspondence to Lili Zhao or Sheng Yi.

Ethics declarations

Ethics Approval

Animal experiments were approved ethically by the Administration Committee of Experimental Animals, Jiangsu, China, and conducted in accordance with the Institutional Animal Care Guidelines of Nantong University.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, Y., Zhao, L. et al. Transcription Factor BCL11A Regulates Schwann Cell Behavior During Peripheral Nerve Regeneration. Mol Neurobiol 60, 5352–5365 (2023). https://doi.org/10.1007/s12035-023-03432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03432-6

Keywords

Navigation