Skip to main content

Advertisement

Log in

Resveratrol Attenuates Chronic Unpredictable Mild Stress-Induced Alterations in the SIRT1/PGC1α/SIRT3 Pathway and Associated Mitochondrial Dysfunction in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Environmental challenges, specifically chronic stress, have long been associated with neuropsychiatric disorders, including anxiety and depression. Sirtuin-1 (SIRT1) is a NAD+-dependent deacetylase that is widely distributed in the cortex and is involved in stress responses and neuropsychiatric disorders. Nevertheless, how chronic stress modulates the SIRT1 pathway and associated signaling remains unclear. In this study, we first explored the impact of chronic unpredictable mild stress (CUMS) on the SIRT1/PGC1α/SIRT3 pathway, on GABAergic mechanisms, and on mitophagy, autophagy and apoptosis in mice. We also asked whether activation of SIRT1 by resveratrol (RSV) can attenuate CUMS-induced molecular and behavioral alterations. Two-month-old C57/BL6J mice were subjected to three weeks of CUMS and one week of RSV treatment (30 mg/kg; i.p.) during the third week of CUMS. CUMS caused downregulation of the SIRT1/PGC1α/SIRT3 pathway leading to impaired mitochondrial morphology and function. CUMS also resulted in a reduction in numbers of parvalbumin-positive interneurons and increased oxidative stress leading to reduced expression of autophagy- and mitophagy-related proteins. Strikingly, activation of SIRT1 by RSV ameliorated expression of SIRT1/PGC1α/SIRT3, and also improved mitochondrial function, GABAergic mechanisms, mitophagy, autophagy and apoptosis. RSV also rescued CUMS-induced anxiety-like and depressive-like behavior in mice. Our results raise the compelling possibility that RSV treatment might be a viable therapeutic method of blocking stress-induced behavioral alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Chen HJ, Antonson AM, Rajasekera TA, Patterson JM, Bailey MT, Gur TL (2020) Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Transl Psychiatry 10(1):191. https://doi.org/10.1038/s41398-020-00876-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soder E, Krkovic K, Lincoln TM (2020) The relevance of chronic stress for the acute stress reaction in people at elevated risk for psychosis. Psychoneuroendocrinology 119:104684. https://doi.org/10.1016/j.psyneuen.2020.104684

    Article  CAS  PubMed  Google Scholar 

  3. Wang YL, Wu HR, Zhang SS, Xiao HL, Yu J, Ma YY, Zhang YD, Liu Q (2021) Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry 11(1):353. https://doi.org/10.1038/s41398-021-01468-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bollinger JL, Horchar MJ, Wohleb ES (2020) Diazepam limits microglia-mediated neuronal remodeling in the prefrontal cortex and associated behavioral consequences following chronic unpredictable stress. Neuropsychopharmacology 45(10):1766–1776. https://doi.org/10.1038/s41386-020-0720-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, You WJ, He Y et al (2020) Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun 11(1):2221. https://doi.org/10.1038/s41467-020-15920-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belleau EL, Treadway MT, Pizzagalli DA (2019) The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry 85(6):443–453. https://doi.org/10.1016/j.biopsych.2018.09.031

    Article  PubMed  Google Scholar 

  7. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA (2008) Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 33(2):320–331. https://doi.org/10.1038/sj.npp.1301410

    Article  CAS  PubMed  Google Scholar 

  8. Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V, Brahmendra Swamy CV, Kumar A et al (2013) Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE 8(5):e63302. https://doi.org/10.1371/journal.pone.0063302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao Y, Zhou JJ, Zhu Y, Kosten T, Li DP (2017) Chronic unpredictable mild stress induces loss of GABA inhibition in Corticotrophin-Releasing hormone-expressing neurons through NKCC1 Upregulation. Neuroendocrinology 104(2):194–208. https://doi.org/10.1159/000446114

    Article  CAS  PubMed  Google Scholar 

  10. Bosch-Presegue L, Vaquero A (2015) Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 282(9):1745–1767. https://doi.org/10.1111/febs.13053

    Article  CAS  PubMed  Google Scholar 

  11. Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, Elmquist JK, Coppari R (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28(40):9989–9996. https://doi.org/10.1523/JNEUROSCI.3257-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zakhary SM, Ayubcha D, Dileo JN, Jose R, Leheste JR, Horowitz JM, Torres G (2010) Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. Anat Rec 293(6):1024–1032. https://doi.org/10.1002/ar.21116

    Article  CAS  Google Scholar 

  13. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, Koomen J, Chen J et al (2011) SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 31(23):4720–4734. https://doi.org/10.1128/MCB.06147-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145. https://doi.org/10.1016/j.tem.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  15. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404(1):1–13. https://doi.org/10.1042/BJ20070140

    Article  CAS  PubMed  Google Scholar 

  16. consortium C (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523(7562):588–591. https://doi.org/10.1038/nature14659

    Article  CAS  Google Scholar 

  17. Luo XJ, Zhang C (2016) Down-regulation of SIRT1 gene expression in major depressive disorder. Am J Psychiatry 173(10):1046. https://doi.org/10.1176/appi.ajp.2016.16040394

    Article  PubMed  Google Scholar 

  18. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y et al (2010) SIRT1 gene is associated with major depressive disorder in the japanese population. J Affect Disord 126(1–2):167–173. https://doi.org/10.1016/j.jad.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  19. Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A, Watanabe Y (2016) Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol Psychiatry 80(11):815–826. https://doi.org/10.1016/j.biopsych.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  20. Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S et al (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147(7):1459–1472. https://doi.org/10.1016/j.cell.2011.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang S, Fang Y, Huang G, Xu X, Padilla-Banks E, Fan W, Xu Q, Sanderson SM et al (2017) Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J 36(21):3175–3193. https://doi.org/10.15252/embj.201796708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bu X, Wu, Lu X, Yang L, Xu X, Wang J, Tang J (2017) Role of SIRT1/PGC-1alpha in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 13:1633–1645. https://doi.org/10.2147/NDT.S129081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwahara T, Bonasio R, Narendra V, Reinberg D (2012) SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol 32(24):5022–5034. https://doi.org/10.1128/MCB.00822-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y, Wang S, Li Y, Yu S, Zhao Y (2017) SIRT1/PGC-1alpha signaling promotes mitochondrial functional recovery and reduces apoptosis after Intracerebral Hemorrhage in rats. Front Mol Neurosci 10:443. https://doi.org/10.3389/fnmol.2017.00443

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Liu L, Tian Y, Wang J, Li J, Zheng J, Zhao H, He M et al (2019) A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron 102(3):668-682e665. https://doi.org/10.1016/j.neuron.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  26. Luscher B, Fuchs T (2015) GABAergic control of depression-related brain states. Adv Pharmacol 73:97–144. https://doi.org/10.1016/bs.apha.2014.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang C, Kalueff AV, Song C (2019) Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. Behav Brain Res 363:109–117. https://doi.org/10.1016/j.bbr.2019.01.045

    Article  CAS  PubMed  Google Scholar 

  28. Liu ZP, Song C, Wang M, He Y, Xu XB, Pan HQ, Chen WB, Peng WJ et al (2014) Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Mol Brain 7:32. https://doi.org/10.1186/1756-6606-7-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabassum S, Misrani A, Huo Q, Ahmed A, Long C, Yang L (2022) Minocycline ameliorates chronic unpredictable mild Stress-Induced Neuroinflammation and abnormal mPFC-HIPP oscillations in mice. Mol Neurobiol 59(11):6874–6895. https://doi.org/10.1007/s12035-022-03018-8

    Article  CAS  PubMed  Google Scholar 

  30. Tremblay R, Lee S, Rudy B (2016) GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91(2):260–292. https://doi.org/10.1016/j.neuron.2016.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruden JB, Dugan LL, Konradi C (2021) Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 46(2):279–287. https://doi.org/10.1038/s41386-020-0778-9

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt-Wilcke T, Fuchs E, Funke K, Vlachos A, Muller-Dahlhaus F, Puts NAJ, Harris RE, Edden RAE (2018) GABA-from inhibition to Cognition: emerging concepts. Neuroscientist 24(5):501–515. https://doi.org/10.1177/1073858417734530

    Article  CAS  PubMed  Google Scholar 

  33. Ferguson BR, Gao WJ (2018) PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circ 12:37. https://doi.org/10.3389/fncir.2018.00037

    Article  CAS  Google Scholar 

  34. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev 39(5):1851–1891. https://doi.org/10.1002/med.21565

    Article  CAS  PubMed  Google Scholar 

  35. Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD et al (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta. J Neurosci 35(2):807–818. https://doi.org/10.1523/JNEUROSCI.2939-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang X, Zhao Y, Zhou Z, Yan J, Zhou B, Chi X, Luo A, Li S (2020) Resveratrol mitigates Sevoflurane-Induced neurotoxicity by the SIRT1-Dependent regulation of BDNF expression in developing mice. Oxidative Med Cell Longev 2020:9018624. https://doi.org/10.1155/2020/9018624

    Article  CAS  Google Scholar 

  37. Tang XL, Wang X, Fang G, Zhao YL, Yan J, Zhou Z, Sun R, Luo AL et al (2021) Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-kappaB pathway in neonatal mice. J Nutr Biochem 90:108579. https://doi.org/10.1016/j.jnutbio.2020.108579

    Article  CAS  PubMed  Google Scholar 

  38. Cerniauskas I, Winterer J, de Jong JW, Lukacsovich D, Yang H, Khan F, Peck JR, Obayashi SK et al (2019) Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula Associated with Deficits in motivated behaviors. Neuron 104(5):899-915e898. https://doi.org/10.1016/j.neuron.2019.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J et al (2021) Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 16(1):14. https://doi.org/10.1186/s13024-021-00434-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moriguchi K, Jogahara T, Oda S, Honda M (2019) Scanning transmission electron microscopic analysis of nitrogen generated by 3, 3’-diaminobenzidine-besed peroxidase reaction with resin ultrathin sections of rhinoceros parotid gland acinar cells. Microscopy 68(2):111–121. https://doi.org/10.1093/jmicro/dfy125

    Article  CAS  PubMed  Google Scholar 

  41. Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:e52434. https://doi.org/10.3791/52434

    Article  Google Scholar 

  42. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328. https://doi.org/10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin-Aragon S, Villar A, Benedi J (2016) Age-dependent effects of esculetin on mood-related behavior and cognition from stressed mice are associated with restoring brain antioxidant status. Prog Neuro-Psychopharmacol Biol Psychiatry 65:1–16. https://doi.org/10.1016/j.pnpbp.2015.08.007

    Article  CAS  Google Scholar 

  44. Pinto Brod LM, Fronza MG, Vargas JP, Ludtke DS, Luchese C, Wilhelm EA, Savegnago L (2016) Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 65:201–207. https://doi.org/10.1016/j.pnpbp.2015.10.008

    Article  CAS  Google Scholar 

  45. Gong Y, Tong L, Yang R, Hu W, Xu X, Wang W, Wang P, Lu X et al (2018) Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation. Neuropharmacology 135:223–233. https://doi.org/10.1016/j.neuropharm.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  46. Makela J, Mudo G, Pham DD, Di Liberto V, Eriksson O, Louhivuori L, Bruelle C, Soliymani R et al (2016) Peroxisome proliferator-activated receptor-gamma coactivator-1alpha mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mitochondria and X-linked inhibitor of apoptosis protein. Eur J Neurosci 43(5):626–639. https://doi.org/10.1111/ejn.13157

    Article  PubMed  Google Scholar 

  47. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540(7631):139–143. https://doi.org/10.1038/nature20555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lucas EK, Dougherty SE, McMeekin LJ, Reid CS, Dobrunz LE, West AB, Hablitz JJ, Cowell RM (2014) PGC-1alpha provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J Neurosci 34(43):14375–14387. https://doi.org/10.1523/JNEUROSCI.1222-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6):252–259. https://doi.org/10.1007/s10787-007-0013-x

    Article  CAS  PubMed  Google Scholar 

  50. Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.170

    Article  CAS  PubMed  Google Scholar 

  51. Shields LY, Kim H, Zhu L, Haddad D, Berthet A, Pathak D, Lam M, Ponnusamy R et al (2015) Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis 6:e1725. https://doi.org/10.1038/cddis.2015.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70(3):385–409. https://doi.org/10.1016/j.neuron.2011.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nusser Z, Cull-Candy S, Farrant M (1997) Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 19(3):697–709. https://doi.org/10.1016/s0896-6273(00)80382-7

    Article  CAS  PubMed  Google Scholar 

  54. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye X, Zhou XJ, Zhang H (2018) Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol 9:2334. https://doi.org/10.3389/fimmu.2018.02334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Menon MB, Dhamija S (2018) Beclin 1 phosphorylation - at the center of autophagy regulation. Front Cell Dev Biol 6:137. https://doi.org/10.3389/fcell.2018.00137

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang XJ, Qi L, Cheng YF, Ji XF, Chi TY, Liu P, Zou LB (2022) PINK1 overexpression prevents forskolin-induced tau hyperphosphorylation and oxidative stress in a rat model of Alzheimer’s disease. Acta Pharmacol Sin 43(8):1916–1927. https://doi.org/10.1038/s41401-021-00810-5

    Article  CAS  PubMed  Google Scholar 

  59. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255. https://doi.org/10.1038/nm.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Biasizzo M, Kopitar-Jerala N (2020) Interplay between NLRP3 inflammasome and autophagy. Front Immunol 11:591803. https://doi.org/10.3389/fimmu.2020.591803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311(5762):847–851. https://doi.org/10.1126/science.1115035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vince JE, De Nardo D, Gao W, Vince AJ, Hall C, McArthur K, Simpson D, Vijayaraj S et al (2018) The mitochondrial apoptotic effectors BAX/BAK activate Caspase-3 and – 7 to trigger NLRP3 inflammasome and Caspase-8 driven IL-1beta activation. Cell Rep 25(9):2339-2353e2334. https://doi.org/10.1016/j.celrep.2018.10.103

    Article  CAS  PubMed  Google Scholar 

  63. Lezak KR, Missig G, Carlezon WA Jr (2017) Behavioral methods to study anxiety in rodents. Dialogues Clin Neurosci 19(2):181–191. https://doi.org/10.31887/DCNS.2017.19.2/wcarlezon

    Article  PubMed  PubMed Central  Google Scholar 

  64. Taylor M, Murphy SE, Selvaraj S, Wylezinkska M, Jezzard P, Cowen PJ, Evans J (2008) Differential effects of citalopram and reboxetine on cortical glx measured with proton MR spectroscopy. J Psychopharmacol 22(5):473–476. https://doi.org/10.1177/0269881107081510

    Article  CAS  PubMed  Google Scholar 

  65. Han YY, Jin K, Pan QS, Li B, Wu ZQ, Gan L, Yang L, Long C (2020) Microglial activation in the dorsal striatum participates in anxiety-like behavior in Cyld knockout mice. Brain Behav Immun 89:326–338. https://doi.org/10.1016/j.bbi.2020.07.011

    Article  CAS  PubMed  Google Scholar 

  66. Yao H, Zhang D, Yu H, Yuan H, Shen H, Lan X, Liu H, Chen X et al (2023) Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation. Mol Psychiatry 28(2):919–930. https://doi.org/10.1038/s41380-022-01841-y

    Article  CAS  PubMed  Google Scholar 

  67. Lu G, Li J, Zhang H, Zhao X, Yan LJ, Yang X (2018) Role and possible mechanisms of Sirt1 in depression. Oxidative Med Cell Longev 2018:8596903. https://doi.org/10.1155/2018/8596903

  68. Lei Y, Wang J, Wang D, Li C, Liu B, Fang X, You J, Guo M et al (2020) SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol Psychiatry 25(5):1094–1111. https://doi.org/10.1038/s41380-019-0352-1

    Article  CAS  PubMed  Google Scholar 

  69. Liu W, Xue X, Xia J, Liu J, Qi Z (2018) Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins. J Affect Disord 227:126–135. https://doi.org/10.1016/j.jad.2017.10.019

    Article  PubMed  Google Scholar 

  70. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP et al (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6(5):836–843. https://doi.org/10.1016/j.celrep.2014.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J (2018) PGC-1alpha protects RPE cells of the aging retina against oxidative stress-induced degeneration through the regulation of senescence and mitochondrial quality control. The significance for AMD pathogenesis. Int J Mol Sci 19(8). https://doi.org/10.3390/ijms19082317

  72. Carnevale I, Pellegrini L, D’Aquila P, Saladini S, Lococo E, Polletta L, Vernucci E, Foglio E et al (2017) SIRT1-SIRT3 axis regulates cellular response to oxidative stress and etoposide. J Cell Physiol 232(7):1835–1844. https://doi.org/10.1002/jcp.25711

    Article  CAS  PubMed  Google Scholar 

  73. Zu Y, Chen XF, Li Q, Zhang ST, Si LN (2021) PGC-1alpha activates SIRT3 to modulate cell proliferation and glycolytic metabolism in breast cancer. Neoplasma 68(2):352–361. https://doi.org/10.4149/neo_2020_200530N584

    Article  CAS  PubMed  Google Scholar 

  74. Yu D, Homiack DR, Sawyer EJ, Schrader LA (2018) BK channel deacetylation by SIRT1 in dentate gyrus regulates anxiety and response to stress. Commun biology 1:82. https://doi.org/10.1038/s42003-018-0088-5

    Article  Google Scholar 

  75. Yu X, Hu Y, Huang W, Ye N, Yan Q, Ni W, Jiang X (2020) Role of AMPK/SIRT1-SIRT3 signaling pathway in affective disorders in unpredictable chronic mild stress mice. Neuropharmacology 165:107925. https://doi.org/10.1016/j.neuropharm.2019.107925

    Article  CAS  PubMed  Google Scholar 

  76. Guo Y, Sun J, Bu S, Li B, Zhang Q, Wang Q, Lai D (2020) Melatonin protects against chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1. Cell Cycle 19(13):1677–1695. https://doi.org/10.1080/15384101.2020.1767403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lakshminarasimhan M, Rauh D, Schutkowski M, Steegborn C (2013) Sirt1 activation by resveratrol is substrate sequence-selective. Aging 5(3):151–154. https://doi.org/10.18632/aging.100542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195. https://doi.org/10.1074/jbc.M501250200

    Article  CAS  PubMed  Google Scholar 

  79. Sharma S, Akundi RS (2019) Mitochondria: a connecting link in the major depressive disorder jigsaw. Curr Neuropharmacol 17(6):550–562. https://doi.org/10.2174/1570159X16666180302120322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879. https://doi.org/10.1038/nrm2275

    Article  CAS  PubMed  Google Scholar 

  82. Weir HJ, Lane JD, Balthasar N (2013) SIRT3: a central regulator of mitochondrial adaptation in health and disease. Genes Cancer 4(3–4):118–124. https://doi.org/10.1177/1947601913476949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bugga P, Alam MJ, Kumar R, Pal S, Chattopadyay N, Banerjee SK (2022) Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast. Cell Signal 94:110309. https://doi.org/10.1016/j.cellsig.2022.110309

    Article  CAS  PubMed  Google Scholar 

  84. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and Brain Mitochondria: a review. Mol Neurobiol 55(3):2085–2101. https://doi.org/10.1007/s12035-017-0448-z

    Article  CAS  PubMed  Google Scholar 

  85. Wang IH, Chen HY, Wang YH, Chang KW, Chen YC, Chang CR (2014) Resveratrol modulates mitochondria dynamics in replicative senescent yeast cells. PLoS ONE 9(8):e104345. https://doi.org/10.1371/journal.pone.0104345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim H, Ahrlund-Richter S, Wang X, Deisseroth K, Carlen M (2016) Prefrontal parvalbumin neurons in control of attention. Cell 164(1–2):208–218. https://doi.org/10.1016/j.cell.2015.11.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Szewczyk-Golec K, Czuczejko J, Tylzanowski P, Lecka J (2018) Strategies for modulating oxidative stress under diverse physiological and pathological conditions. Oxidative Med Cell Longev 2018:3987941. https://doi.org/10.1155/2018/3987941

  88. Cheng A, Wang J, Ghena N, Zhao Q, Perone I, King TM, Veech RL, Gorospe M et al (2020) SIRT3 haploinsufficiency aggravates loss of GABAergic interneurons and neuronal network hyperexcitability in an Alzheimer’s disease model. J Neurosci 40(3):694–709. https://doi.org/10.1523/JNEUROSCI.1446-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gafford GM, Guo JD, Flandreau EI, Hazra R, Rainnie DG, Ressler KJ (2012) Cell-type specific deletion of GABA(A)alpha1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc Natl Acad Sci USA 109(40):16330–16335. https://doi.org/10.1073/pnas.1119261109

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tabassum S, Misrani A, Huo Q, Ahmed A, Long C, Yang L (2022) Minocycline ameliorates chronic unpredictable mild Stress-Induced Neuroinflammation and abnormal mPFC-HIPP oscillations in mice. Mol Neurobiol. https://doi.org/10.1007/s12035-022-03018-8

  91. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20(9):1013–1022. https://doi.org/10.1038/s41556-018-0176-2

    Article  CAS  PubMed  Google Scholar 

  93. Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500. https://doi.org/10.1146/annurev-cellbio-100818-125242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lakhani R, Vogel KR, Till A, Liu J, Burnett SF, Gibson KM, Subramani S (2014) Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med 6(4):551–566. https://doi.org/10.1002/emmm.201303356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, Liu Y, Wan R et al (2016) Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metabol 23(1):128–142. https://doi.org/10.1016/j.cmet.2015.10.013

    Article  CAS  Google Scholar 

  96. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18(9):2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gong Z, Pan J, Shen Q, Li M, Peng Y (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflamm 15(1):242. https://doi.org/10.1186/s12974-018-1282-6

    Article  CAS  Google Scholar 

  98. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, et al. (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3). https://doi.org/10.3390/biomedicines6030091

  99. Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J (2019) Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci Biobehav Rev 99:101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (31871170, 32170950, and 31970915), and the Natural Science Foundation of Guangdong Province (2021A1515010804 and 2023A1515010899).

Author information

Authors and Affiliations

Authors

Contributions

Sidra Tabassum, project initiation, experimental design, immunostaining, behavior, statistical analysis, and manuscript writing; Afzal Misrani, western blotting, TEM analysis, and manuscript writing; Hui-xian Huang, patch clamp recording; Zai-yong Zhang, critical review of the manuscript; Qiao-wei Li, supervision, Cheng Long, funding acquisition and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cheng Long.

Ethics declarations

Ethics Statement

This study was approved by the South China Normal University Institutional Review Boards. The use of animals in experiments was approved by the Institutional Animal Care and Use Committee (IACUC) and followed National Institutes of Health (NIH) guidelines.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read the manuscript and approved the final version of the manuscript.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, S., Misrani, A., Huang, Hx. et al. Resveratrol Attenuates Chronic Unpredictable Mild Stress-Induced Alterations in the SIRT1/PGC1α/SIRT3 Pathway and Associated Mitochondrial Dysfunction in Mice. Mol Neurobiol 60, 5102–5116 (2023). https://doi.org/10.1007/s12035-023-03395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03395-8

Keywords

Navigation