Skip to main content

Advertisement

Log in

Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing data suggest a crucial role of circadian rhythm in regulating metabolic and neurological diseases, and Bmal1 is regarded as a key regulator of circadian transcription. The aim of this study is to investigate the role of Bmal1 in the disruption of circadian rhythm and neuropsychiatric injuries in type 2 diabetes mellitus (T2DM). A T2DM model was induced by the combination of high-fat-diet (HFD) and streptozotocin (STZ) in vivo or HT-22 cells challenged with palmitic-acid (PA) in vitro. The glucolipid metabolism indicators, behavioral performance, and expression of synaptic plasticity proteins and circadian rhythm-related proteins were detected. These changes were also observed after interference of Bmal1 expression via overexpressed plasmid or small interfering RNAs in vitro. The results showed that HFD/STZ could induce T2DM-like glycolipid metabolic turmoil and abnormal neuropsychiatric behaviors in mice, as indicated by the increased concentrations of fasting blood-glucose (FBG), HbA1c and lipids, the impaired glucose tolerance, and the decreased preference index of novel object or novel arm in the novel object recognition test (NOR) and Y-maze test (Y-maze). Consistently, the protein expression of synaptic plasticity proteins and circadian rhythm-related proteins and the positive fluorescence intensity of MT1B and Bmal1 were decreased in the hippocampus of HFD/STZ-induced mice or PA-challenged HT-22 cells. Furthermore, overexpression of Bmal1 could improve the PA-induced lipid metabolic dysfunction and increase the decreased expressions of synaptic plasticity proteins and circadian rhythm-related proteins, and vice versa. These results suggested a crucial role of Bmal1 in T2DM-related glycolipid metabolic disorder and neuropsychiatric injury, which mechanism might be involved in the regulation of synaptic plasticity and circadian rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

References

  1. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98. https://doi.org/10.1038/nrendo.2017.151

    Article  PubMed  Google Scholar 

  2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  3. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14(10):591–604. https://doi.org/10.1038/s41574-018-0048-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ (2021) Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-alpha/NF-kappaB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci:1–11. https://doi.org/10.1080/1028415X.2021.1901047

  5. de la Monte SM (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77(1):47–65. https://doi.org/10.1007/s40265-016-0674-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonds JA, Shetti A, Stephen TKL, Bonini MG, Minshall RD, Lazarov O (2020) Deficits in hippocampal neurogenesis in obesity-dependent and -independent type-2 diabetes mellitus mouse models. Sci Rep 10(1):16368. https://doi.org/10.1038/s41598-020-73401-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu D, Yu Y, Xu Y, Ge J (2021) Plasma nesfatin-1: potential predictor and diagnostic biomarker for cognitive dysfunction in T2DM patient. Diabetes Metab Syndr Obes 14:3555–3566. https://doi.org/10.2147/DMSO.S323009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao XR, Chen Z, Fang K, Xu JX, Ge JF (2021) Protective effect of quercetin against the metabolic dysfunction of glucose and lipids and its associated learning and memory impairments in NAFLD rats. Lipids Health Dis 20(1):164. https://doi.org/10.1186/s12944-021-01590-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qi CC, Chen XX, Gao XR, Xu JX, Liu S, Ge JF (2021) Impaired learning and memory ability induced by a bilaterally hippocampal injection of streptozotocin in mice: involved with the adaptive changes of synaptic plasticity. Front Aging Neurosci 13:633495. https://doi.org/10.3389/fnagi.2021.633495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA (2020) Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol 8(4):325–336. https://doi.org/10.1016/s2213-8587(19)30405-x

    Article  CAS  PubMed  Google Scholar 

  11. Asmat U, Abad K, Ismail K (2016) Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm J 24(5):547–553. https://doi.org/10.1016/j.jsps.2015.03.013

    Article  PubMed  Google Scholar 

  12. Karbowski J (2019) Metabolic constraints on synaptic learning and memory. J Neurophysiol 122(4):1473–1490. https://doi.org/10.1152/jn.00092.2019

    Article  CAS  PubMed  Google Scholar 

  13. Dong Y, Pu K, Duan W, Chen H, Chen L, Wang Y (2018) Involvement of Akt/CREB signaling pathways in the protective effect of EPA against interleukin-1beta-induced cytotoxicity and BDNF down-regulation in cultured rat hippocampal neurons. BMC Neurosci 19(1):52. https://doi.org/10.1186/s12868-018-0455-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goetzl EJ, Kapogiannis D, Schwartz JB, Lobach IV, Goetzl L, Abner EL, Jicha GA, Karydas AM, Boxer A, Miller BL (2016) Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J 30(12):4141–4148. https://doi.org/10.1096/fj.201600816R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fulgenzi G, Hong Z, Tomassoni-Ardori F, Barella LF, Becker J, Barrick C, Swing D, Yanpallewar S, Croix BS, Wess J, Gavrilova O, Tessarollo L (2020) Novel metabolic role for BDNF in pancreatic beta-cell insulin secretion. Nat Commun 11(1):1950. https://doi.org/10.1038/s41467-020-15833-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patas K, Penninx BW, Bus BA, Vogelzangs N, Molendijk ML, Elzinga BM, Bosker FJ, Oude Voshaar RC (2014) Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain Behav Immun 36:71–79. https://doi.org/10.1016/j.bbi.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  17. Fang K, Li HR, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Li H, Ge JF (2019) Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol 10:1544. https://doi.org/10.3389/fphar.2019.01544

    Article  CAS  PubMed  Google Scholar 

  18. Fang K, Xu JX, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Ge JF (2020) Differential serum exosome microRNA profile in a stress-induced depression rat model. J Affect Disord 274:144–158. https://doi.org/10.1016/j.jad.2020.05.017

    Article  CAS  PubMed  Google Scholar 

  19. Fan M, Liu S, Sun HM, Ma MD, Gao YJ, Qi CC, Xia QR, Ge JF (2022) Bilateral intracerebroventricular injection of streptozotocin induces AD-like behavioral impairments and neuropathological features in mice: involved with the fundamental role of neuroinflammation. Biomed Pharmacother 153:113375. https://doi.org/10.1016/j.biopha.2022.113375

    Article  CAS  PubMed  Google Scholar 

  20. Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, Ge JF (2022) Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation 19(1):35. https://doi.org/10.1186/s12974-022-02393-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge JF, Peng YY, Qi CC, Chen FH, Zhou JN (2014) Depression-like behavior in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization. Endocrine 45(3):430–438. https://doi.org/10.1007/s12020-013-0001-4

    Article  CAS  PubMed  Google Scholar 

  22. Corpas R, Grinan-Ferre C, Palomera-Avalos V, Porquet D, Garcia de Frutos P, FranciscatoCozzolino SM, Rodriguez-Farre E, Pallas M, Sanfeliu C, Cardoso BR (2018) Melatonin induces mechanisms of brain resilience against neurodegeneration. J Pineal Res 65(4):e12515. https://doi.org/10.1111/jpi.12515

    Article  CAS  PubMed  Google Scholar 

  23. Javeed N, Matveyenko AV (2018) Circadian etiology of type 2 diabetes mellitus. Physiology 33(2):138–150. https://doi.org/10.1152/physiol.00003.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petrenko V, Gandasi NR, Sage D, Tengholm A, Barg S, Dibner C (2020) In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc Natl Acad Sci U S A 117(5):2484–2495. https://doi.org/10.1073/pnas.1916539117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C (2017) Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 15(3):434–443. https://doi.org/10.2174/1570159X14666161228122115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, He J, Li X, Li Y, Zhou Y, Cai S (2021) Neu-P11 - a novel melatonin receptor agonist, could improve the features of type-2 diabetes mellitus in rats. Endokrynol Pol 72(6):634–642. https://doi.org/10.5603/EP.a2021.0084

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Zhang J, Luo X, Li M, Yue Y, Laudon M, Jia Z, Zhang R (2017) Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. Eur J Pharmacol 812:225–233. https://doi.org/10.1016/j.ejphar.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  28. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  29. XiaoweiJin LPS, Weaver DR, Zylka MJ, De Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68

    Article  Google Scholar 

  30. Woodie LN, Johnson RM, Ahmed B, Fowler S, Haynes W, Carmona B, Reed M, Suppiramaniam V, Greene MW (2020) Western diet-induced obesity disrupts the diurnal rhythmicity of hippocampal core clock gene expression in a mouse model. Brain Behav Immun 88:815–825. https://doi.org/10.1016/j.bbi.2020.05.053

    Article  CAS  PubMed  Google Scholar 

  31. Rakshit K, Hsu TW, Matveyenko AV (2016) Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice. Diabetologia 59(4):734–743. https://doi.org/10.1007/s00125-015-3859-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rakshit K, Matveyenko AV (2021) Induction of core circadian clock transcription factor Bmal1 enhances beta-cell function and protects against obesity-induced glucose intolerance. Diabetes 70(1):143–154. https://doi.org/10.2337/db20-0192

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Peng X, Fan R, Dong K, Shi X, Zhang S, Yu X, Yang Y (2021) Disruption of circadian clocks promotes progression of Alzheimer’s disease in diabetic mice. Mol Neurobiol 58(9):4404–4412. https://doi.org/10.1007/s12035-021-02425-7

    Article  CAS  PubMed  Google Scholar 

  34. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A 108(4):1657–1662. https://doi.org/10.1073/pnas.1018375108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Heydemann A (2016) An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res 2016:2902351. https://doi.org/10.1155/2016/2902351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li D, Jiang C, Mei G, Zhao Y, Chen L, Liu J, Tang Y, Gao C, Yao P (2020) Quercetin alleviates ferroptosis of pancreatic beta cells in type 2 diabetes. Nutrients 12 (10). https://doi.org/10.3390/nu12102954

  37. Zhang C, Deng J, Liu D, Tuo X, Xiao L, Lai B, Yao Q, Liu J, Yang H, Wang N (2018) Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARalpha/PPARgamma coactivator-1alpha pathway. Br J Pharmacol 175(22):4218–4228. https://doi.org/10.1111/bph.14482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan R, Zhao L, Ding BJ, Xiao R, Ma WW (2021) The association of blood non-esterified fatty acid, saturated fatty acids, and polyunsaturated fatty acids levels with mild cognitive impairment in Chinese population aged 35–64 years: a cross-sectional study. Nutr Neurosci 24(2):148–160. https://doi.org/10.1080/1028415X.2019.1610606

    Article  CAS  PubMed  Google Scholar 

  39. Gerst F, Singer C, Noack K, Graf D, Kaiser G, Panse M, Kovarova M, Schleicher E, Haring HU, Drews G, Ullrich S (2020) Glucose responsiveness of beta-cells depends on fatty acids. Exp Clin Endocrinol Diabetes 128(10):644–653. https://doi.org/10.1055/a-0884-2919

    Article  CAS  PubMed  Google Scholar 

  40. Oh YS, Bae GD, Baek DJ, Park EY, Jun HS (2018) Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol 9:384. https://doi.org/10.3389/fendo.2018.00384

    Article  Google Scholar 

  41. Ng YW, Say YH (2018) Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells. PeerJ 6:e4696. https://doi.org/10.7717/peerj.4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amine H, Benomar Y, Taouis M (2021) Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Sci Rep 11(1):5427. https://doi.org/10.1038/s41598-021-85018-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Malik SA, Acharya JD, Mehendale NK, Kamat SS, Ghaskadbi SS (2019) Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic Res 53(7):815–827. https://doi.org/10.1080/10715762.2019.1635252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW (2020) Nicotinamide mononucleotide administration prevents experimental diabetes-induced cognitive impairment and loss of hippocampal neurons. Int J Mol Sci 21 (11). https://doi.org/10.3390/ijms21113756

  45. Sadanand S, Balachandar R, Bharath S (2016) Memory and executive functions in persons with type 2 diabetes: a meta-analysis. Diabetes Metab Res Rev 32(2):132–142. https://doi.org/10.1002/dmrr.2664

    Article  PubMed  Google Scholar 

  46. Shin EJ, Kim JM, Kang JY, Park SK, Han HJ, Kim HJ, Kim CW, Lee U, Heo HJ (2021) Ameliorative effect of persimmon (Diospyros kaki) in cognitively impaired diabetic mice. J Food Biochem 45(1):e13581. https://doi.org/10.1111/jfbc.13581

    Article  CAS  PubMed  Google Scholar 

  47. Ye T, Meng X, Zhai Y, Xie W, Wang R, Sun G, Sun X (2018) Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front Pharmacol 9:1346. https://doi.org/10.3389/fphar.2018.01346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moheet A, Mangia S, Seaquist ER (2015) Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci 1353:60–71. https://doi.org/10.1111/nyas.12807

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cassano V, Leo A, Tallarico M, Nesci V, Cimellaro A, Fiorentino TV, Citraro R, Hribal ML, De Sarro G, Perticone F, Sesti G, Russo E, Sciacqua A (2020) Metabolic and cognitive effects of ranolazine in type 2 diabetes mellitus: data from an in vivo model. Nutrients 12 (2). https://doi.org/10.3390/nu12020382

  50. Kamdi SP, Raval A, Nakhate KT (2021) Phloridzin ameliorates type 2 diabetes-induced depression in mice by mitigating oxidative stress and modulating brain-derived neurotrophic factor. J Diabetes Metab Disord 20(1):341–348. https://doi.org/10.1007/s40200-021-00750-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pang X, Makinde EA, Eze FN, Olatunji OJ (2021) Securidaca inappendiculata polyphenol rich extract counteracts cognitive deficits, neuropathy, neuroinflammation and oxidative stress in diabetic encephalopathic rats via p38 MAPK/Nrf2/HO-1 pathways. Front Pharmacol 12:737764. https://doi.org/10.3389/fphar.2021.737764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, Stanton C, Dinan TG, Cryan JF (2017) Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 82(7):472–487. https://doi.org/10.1016/j.biopsych.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  53. Nie X, Wei X, Ma H, Fan L, Chen WD (2021) The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 25(14):6479–6495. https://doi.org/10.1111/jcmm.16663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piccolo BD, Graham JL, Kang P, Randolph CE, Shankar K, Yeruva L, Fox R, Robeson MS, Moody B, LeRoith T, Stanhope KL, Adams SH, Havel PJ (2021) Progression of diabetes is associated with changes in the ileal transcriptome and ileal-colon morphology in the UC Davis type 2 diabetes mellitus rat. Physiol Rep 9(22):e15102. https://doi.org/10.14814/phy2.15102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang LM, Zhang Y, Li X, Zhang ML, Zhu L, Zhang GX, Xu YM (2018) Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity. Brain Behav Immun 68:44–55. https://doi.org/10.1016/j.bbi.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto M, Guo DH, Hernandez CM, Stranahan AM (2019) Endothelial Adora2a activation promotes blood-brain barrier breakdown and cognitive impairment in mice with diet-induced insulin resistance. J Neurosci 39(21):4179–4192. https://doi.org/10.1523/JNEUROSCI.2506-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leal G, Bramham CR, Duarte CB (2017) BDNF and hippocampal synaptic plasticity. Vitam Horm 104:153–195. https://doi.org/10.1016/bs.vh.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  58. de Pins B, Cifuentes-Diaz C, Farah AT, Lopez-Molina L, Montalban E, Sancho-Balsells A, Lopez A, Gines S, Delgado-Garcia JM, Alberch J, Gruart A, Girault JA, Giralt A (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J Neurosci 39(13):2441–2458. https://doi.org/10.1523/JNEUROSCI.2121-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fang X, Chen Y, Wang Y, Ren J, Zhang C (2019) Depressive symptoms in schizophrenia patients: a possible relationship between SIRT1 and BDNF. Prog Neuropsychopharmacol Biol Psychiatry 95:109673. https://doi.org/10.1016/j.pnpbp.2019.109673

    Article  CAS  PubMed  Google Scholar 

  60. Zborowski VA, Heck SO, Marques LS, Bastos NK, Nogueira CW (2021) Memory impairment and depressive-like phenotype are accompanied by downregulation of hippocampal insulin and BDNF signaling pathways in prediabetic mice. Physiol Behav 237:113346. https://doi.org/10.1016/j.physbeh.2021.113346

    Article  CAS  PubMed  Google Scholar 

  61. Chen XX, Xu YY, Wu R, Chen Z, Fang K, Han YX, Yu Y, Huang LL, Peng L, Ge JF (2019) Resveratrol reduces glucolipid metabolic dysfunction and learning and memory impairment in a NAFLD rat model: involvement in regulating the imbalance of nesfatin-1 abundance and copine 6 expression. Front Endocrinol 10:434. https://doi.org/10.3389/fendo.2019.00434

    Article  Google Scholar 

  62. Mason IC, Qian J, Adler GK, Scheer F (2020) Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia 63(3):462–472. https://doi.org/10.1007/s00125-019-05059-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bilu C, Zimmet P, Vishnevskia-Dai V, Einat H, Agam G, Grossman E, Kronfeld-Schor N (2019) Diurnality, type 2 diabetes, and depressive-like behavior. J Biol Rhythms 34(1):69–83. https://doi.org/10.1177/0748730418819373

    Article  CAS  PubMed  Google Scholar 

  64. Musiek ES, Xiong DD, Holtzman DM (2015) Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 47:e148. https://doi.org/10.1038/emm.2014.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Comai S, De Gregorio D, Posa L, Ochoa-Sanchez R, Bedini A, Gobbi G (2020) Dysfunction of serotonergic activity and emotional responses across the light-dark cycle in mice lacking melatonin MT2 receptors. J Pineal Res 69(1):e12653. https://doi.org/10.1111/jpi.12653

    Article  CAS  PubMed  Google Scholar 

  66. Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G (2015) Melancholic-like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol 18 (3). https://doi.org/10.1093/ijnp/pyu075

  67. Kampmann U, Lauritzen ES, Grarup N, Jessen N, Hansen T, Moller N, Stoy J (2021) Acute metabolic effects of melatonin-a randomized crossover study in healthy young men. J Pineal Res 70(2):1e2706. https://doi.org/10.1111/jpi.12706

    Article  CAS  Google Scholar 

  68. Casale CE, Goel N (2021) Genetic markers of differential vulnerability to sleep loss in adults. Genes (Basel) 12 (9). https://doi.org/10.3390/genes12091317

  69. Miranda-Anaya M, Luna-Moreno D, Carmona-Castro A, Diaz-Munoz M (2017) Differences in photic entrainment of circadian locomotor activity between lean and obese volcano mice (Neotomodon alstoni). J Circadian Rhythms 15:1. https://doi.org/10.5334/jcr.145

    Article  PubMed  PubMed Central  Google Scholar 

  70. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164–179. https://doi.org/10.1038/nrg.2016.150

    Article  CAS  PubMed  Google Scholar 

  71. Kyriacou CP, Hastings MH (2010) Circadian clocks: genes, sleep, and cognition. Trends Cogn Sci 14(6):259–267. https://doi.org/10.1016/j.tics.2010.03.007

    Article  PubMed  Google Scholar 

  72. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42(2):105–116. https://doi.org/10.1038/ng.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Renstrom F, Koivula RW, Varga TV, Hallmans G, Mulder H, Florez JC, Hu FB, Franks PW (2015) Season-dependent associations of circadian rhythm-regulating loci (CRY1, CRY2 and MTNR1B) and glucose homeostasis: the GLACIER Study. Diabetologia 58(5):997–1005. https://doi.org/10.1007/s00125-015-3533-8

    Article  CAS  PubMed  Google Scholar 

  74. Wang X, Wang L, Xu Y, Yu Q, Li L, Guo Y (2016) Intranasal administration of Exendin-4 antagonizes Abeta31-35-induced disruption of circadian rhythm and impairment of learning and memory. Aging Clin Exp Res 28(6):1259–1266. https://doi.org/10.1007/s40520-016-0548-z

    Article  PubMed  Google Scholar 

  75. Kim M, Custodio RJ, Lee HJ, Sayson LV, Ortiz DM, Kim BN, Kim HJ, Cheong JH (2022) Per2 expression regulates the spatial working memory of mice through DRD1-PKA-CREB signaling. Mol Neurobiol 59(7):4292–4303. https://doi.org/10.1007/s12035-022-02845-z

    Article  CAS  PubMed  Google Scholar 

  76. Majumdar T, Dhar J, Patel S, Kondratov R, Barik S (2017) Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses. Innate Immun 23(2):147–154. https://doi.org/10.1177/1753425916681075

    Article  CAS  PubMed  Google Scholar 

  77. Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y (2022) Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: mechanisms and interventions. Aging Cell:e13704. https://doi.org/10.1111/acel.13704

  78. Lee J, Kim DE, Griffin P, Sheehan PW, Kim DH, Musiek ES, Yoon SY (2020) Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell 19(2):e13078. https://doi.org/10.1111/acel.13078

    Article  CAS  PubMed  Google Scholar 

  79. Ali AAH, Schwarz-Herzke B, Rollenhagen A, Anstotz M, Holub M, Lubke J, Rose CR, Schnittler HJ, von Gall C (2020) Bmal1-deficiency affects glial synaptic coverage of the hippocampal mossy fiber synapse and the actin cytoskeleton in astrocytes. Glia 68(5):947–962. https://doi.org/10.1002/glia.23754

    Article  PubMed  Google Scholar 

  80. Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri TD (2017) Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8:14336. https://doi.org/10.1038/ncomms14336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Center for Scientific Research of Anhui Medical University for valuable help in our experiment and Dr. Qiao Jinping, who assisted in the manuscript revision and polishing.

Funding

This study is funded by the National Natural Science Foundation of China (81870403), Foundation for the Top Talents in the University of Anhui Province (gxbjZD2022013), and Scientific Research Promotion Plan of Anhui Medical University (2022xkjT009).

Author information

Authors and Affiliations

Authors

Contributions

Prof. Jinfang Ge designed the experiment and supervised the project. Ms. Xinran Gao and Mr. Yadong Wei conducted the experiment and completed the first manuscript with support from Prof. Jinfang Ge. Prof. Congcong Qi contributed to the animal experiment. Ms. Dandan Zang contributed to the immunofluorescence. Mr. Huaizhi Sun, Mr. Shengwei Hao, Ms. Mengdie Ma, and Ms. Huimin Sun helped preparing and performing behavioral tests.

Corresponding author

Correspondence to Jinfang Ge.

Ethics declarations

Ethics Approval

The animal study protocol was approved by the Animal Care and Use Committee of Anhui Medical University in accordance with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH publication No. 85–23, revised 1985).

Consent to Participate

Not applicable.

Consent for Publication

All authors have given their consent to publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3714 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wei, Y., Sun, H. et al. Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms. Mol Neurobiol 60, 4595–4617 (2023). https://doi.org/10.1007/s12035-023-03360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03360-5

Keywords

Navigation