Skip to main content

Advertisement

Log in

Involvement of Abnormal p-α-syn Accumulation and TLR2-Mediated Inflammation of Schwann Cells in Enteric Autonomic Nerve Dysfunction of Parkinson’s Disease: an Animal Model Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The study was designed to investigate the pathogenesis of gastrointestinal (GI) impairment in Parkinson’s disease (PD). We utilized 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) and probenecid (250 mg/kg) to prepare a PD mice model. MPTP modeling was first confirmed. GI motility was measured using stool collection test and enteric plexus loss was also detected. Intestinal phosphorylated α-synuclein (p-α-syn), inflammation, and S100 were assessed using western blotting. Association between Toll-like receptor 2(TLR2) and GI function was validated by Pearson’s correlations. Immunofluorescence was applied to show co-localizations of intestinal p-α-syn, inflammation, and Schwann cells (SCs). CU-CPT22 (3 mg/kg, a TLR1/TLR2 inhibitor) was adopted then. Success in modeling, damaged GI neuron and function, and activated intestinal p-α-syn, inflammation, and SCs responses were observed in MPTP group, with TLR2 related to GI damage. Increased p-α-syn and inflammatory factors were shown in SCs of myenteron for MPTP mice. Recovered fecal water content and depression of inflammation, p-α-syn deposition, and SCs activity were noticed after TLR2 suppression. The study investigates a novel mechanism of PD GI autonomic dysfunction, demonstrating that p-α-syn accumulation and TLR2 signaling of SCs were involved in disrupted gut homeostasis and treatments targeting TLR2-mediated pathway might be a possible therapy for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available upon reasonable request.

References

  1. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/s0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  2. Braak H, Vos RAID, Bohl J, Tredici KD (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72. https://doi.org/10.1016/j.neulet.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  3. Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14:625–639. https://doi.org/10.1016/S1474-4422(15)00007-1

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Tredici KD, Rüb U, Vos RAID, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  5. Xanthos DN, Sandkuhler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53. https://doi.org/10.1038/nrn3617

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19. https://doi.org/10.1186/s40035-015-0042-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650. https://doi.org/10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  8. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010:672395. https://doi.org/10.1155/2010/672395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daniele SG, Beraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA (2015) Activation of MyD88-dependent TLR1/2 signaling by misfolded alpha-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 8:ra45. https://doi.org/10.1126/scisignal.2005965

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rocha EM, De Miranda B, Sanders LH (2018) Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 109:249–257. https://doi.org/10.1016/j.nbd.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Wu J, Shen F-F, Yuan YS, Li X, Ji P et al (2020) Activated Schwann cells and increased inflammatory cytokines IL-1beta, IL-6, and TNF-alpha in patients’ sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson’s disease. CNS Neurosci Ther 26:518–526. https://doi.org/10.1111/cns.13282

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Zhu L, Sun L, Zhi Y, Ding J, Yuan YS et al (2019) Phosphorylated alpha-synuclein deposits in sural nerve deriving from Schwann cells: a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 60:57–63. https://doi.org/10.1016/j.parkreldis.2018.10.003

    Article  PubMed  Google Scholar 

  13. Sun L, Jiang WW, Wang Y, Yuan YS, Rong Z, Wu J et al (2021) Phosphorylated α-synuclein aggregated in Schwann cells exacerbates peripheral neuroinflammation and nerve dysfunction in Parkinson’s disease through TLR2/NF-κB pathway. Cell Death Discov 7:289. https://doi.org/10.1038/s41420-021-00676-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S (2013) The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis 55:95–103. https://doi.org/10.1016/j.nbd.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  15. Greene JG (2011) Animal models of gastrointestinal problems in Parkinson’s disease. J Parkinson’s Dis 1:137–149. https://doi.org/10.3233/JPD-2011-11033

    Article  CAS  Google Scholar 

  16. Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G (2019) Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun 81:509–522. https://doi.org/10.1016/j.bbi.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  17. Lin F, Shan W, Zheng Y, Pan L, Zuo Z (2021) Toll-like receptor 2 activation and up-regulation by high mobility group box-1 contribute to post-operative neuroinflammation and cognitive dysfunction in mice. J Neurochem 158:328–341. https://doi.org/10.1111/jnc.15368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fonseca JF, Alvim LB, Nunes ÁC, Oliveira FMS, Amaral RS, Caliari MV et al (2019) Probiotic effect of Bifidobacterium longum 5(1A) and Weissella paramesenteroides WpK4 on gerbils infected with Giardia lamblia. J Appl Microbiol 127:1184–1191. https://doi.org/10.1111/jam.14338

    Article  CAS  PubMed  Google Scholar 

  19. Kouli A, Horne CB, Williams-Gray CH (2019) Toll-like receptors and their therapeutic potential in Parkinson’s disease and alpha-synucleinopathies. Brain Behav Immun 81:41–51. https://doi.org/10.1016/j.bbi.2019.06.042

    Article  CAS  PubMed  Google Scholar 

  20. Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP (2018) Role of microglia TLRs in neurodegeneration. Front Cell Neurosci 12:329. https://doi.org/10.3389/fncel.2018.00329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin-Rodriguez O, Gauthier T, Bonnefoy F, Couturier M, Daoui A, Chague C et al (2021) Pro-resolving factors released by macrophages after efferocytosis promote mucosal wound healing in inflammatory bowel disease. Front Immunol 12:754475. https://doi.org/10.3389/fimmu.2021.754475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheibe K, Kersten C, Schmied A, Vieth M, Primbs T, Carle B et al (2019) Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology 156:1082-1097.e1011. https://doi.org/10.1053/j.gastro.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  23. Blake MR, Raker JM, Whelan K (2016) Validity and reliability of the Bristol Stool Form Scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 44:693–703. https://doi.org/10.1111/apt.13746

    Article  CAS  PubMed  Google Scholar 

  24. Tsukita K, Sakamaki-Tsukita H, Tanaka K, Suenaga T, Takahashi R (2019) Value of in vivo alpha-synuclein deposits in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 34:1452–1463. https://doi.org/10.1002/mds.27794

    Article  CAS  PubMed  Google Scholar 

  25. Sharma A, Kurek J, Morgan JC, Wakade C, Rao SSC (2018) Constipation in Parkinson’s disease: a nuisance or nuanced answer to the pathophysiological puzzle? Curr Gastroenterol Rep 20:1–9. https://doi.org/10.1007/s11894-018-0609-x

    Article  PubMed  Google Scholar 

  26. Delattre AM, Carabelli B, Mori MA, Kempe PG, Rizzo de Souza LE, Zanata SM et al (2017) Maternal omega-3 supplement improves dopaminergic system in pre- and postnatal inflammation-induced neurotoxicity in Parkinson’s disease model. Mol Neurobiol 54:2090–2106. https://doi.org/10.1007/s12035-016-9803-8

    Article  CAS  PubMed  Google Scholar 

  27. Cao L, Li D, Feng P, Li L, Xue GF, Li G et al (2016) A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain. NeuroReport 27:384–391. https://doi.org/10.1097/WNR.0000000000000548

    Article  CAS  PubMed  Google Scholar 

  28. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  29. Mendes-Pinheiro B, Soares-Cunha C, Marote A, Loureiro-Campos E, Campos J, Barata-Antunes S et al (2021) Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into non-motor phenotype and glial response. Int J Mol Sci 22. https://doi.org/10.3390/ijms222111530

  30. Anderson G, Noorian AR, Taylor G, Anitha M, Bernhard D, Srinivasan S et al (2007) Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 207:4–12. https://doi.org/10.1016/j.expneurol.2007.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu HC, Zhao J, Luo CY, Li QQ (2012) Gastrointestinal dysfunction in a Parkinson’s disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J Mol Neurosci 47:15–25. https://doi.org/10.1007/s12031-011-9560-0

    Article  CAS  PubMed  Google Scholar 

  32. Singaram C, Ashraf W, Gaumnitz EA, Torbey C, Sengupta A, Pfeiffer R et al (1995) Dopaminergic defect of enteric nervous system in Parkinson’s disease patients with chronic constipation. Lancet 346:861–864. https://doi.org/10.1016/s0140-6736(95)92707-7

    Article  CAS  PubMed  Google Scholar 

  33. Lai F, Jiang R, Xie W, Liu X, Tang Y, Xiao H et al (2018) Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurochem Res 43:1986–1999. https://doi.org/10.1007/s11064-018-2620-x

    Article  CAS  PubMed  Google Scholar 

  34. Han NR, Kim YK, Ahn S, Hwang TY, Lee H, Park HJ (2020) A comprehensive phenotype of non-motor impairments and distribution of alpha-synuclein deposition in parkinsonism-induced mice by a combination injection of MPTP and probenecid. Front Aging Neurosci 12:599045. https://doi.org/10.3389/fnagi.2020.599045

    Article  CAS  PubMed  Google Scholar 

  35. Natale G, Kastsiushenka O, Fulceri F, Ruggieri S, Paparelli A, Fornai F (2010) MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut. Brain Res 1355:195–206. https://doi.org/10.1016/j.brainres.2010.07.076

    Article  CAS  PubMed  Google Scholar 

  36. Antunes L, Frasquilho S, Ostaszewski M, Weber J, Longhino L, Antony P et al (2016) Similar alpha-Synuclein staining in the colon mucosa in patients with Parkinson’s disease and controls. Mov Disord 31:1567–1570. https://doi.org/10.1002/mds.26702

    Article  CAS  PubMed  Google Scholar 

  37. Vaikath NN, Erskine D, Morris CM, Majbour NK, Vekrellis K, Li JY et al (2019) Heterogeneity in alpha-synuclein subtypes and their expression in cortical brain tissue lysates from Lewy body diseases and Alzheimer’s disease. Neuropathol Appl Neurobiol 45:597–608. https://doi.org/10.1111/nan.12531

    Article  CAS  PubMed  Google Scholar 

  38. Clairembault T, Leclair-Visonneau L, Neunlist M, Derkinderen P (2015) Enteric glial cells: new players in Parkinson’s disease? Mov Disord 30:494–498. https://doi.org/10.1002/mds.25979

    Article  PubMed  Google Scholar 

  39. Li Y, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14:2592–2603. https://doi.org/10.1111/j.1582-4934.2010.01127.x

    Article  CAS  Google Scholar 

  40. Goethals S, Ydens E, Timmerman V, Janssens S (2010) Toll-like receptor expression in the peripheral nerve. Glia 58:1701–1709. https://doi.org/10.1002/glia.21041

    Article  PubMed  Google Scholar 

  41. Kim C, Spencer B, Rockenstein E, Yamakado H, Mante M, Adame A et al (2018) Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating alpha-synuclein transmission and neuroinflammation. Mol Neurodegener 13:43. https://doi.org/10.1186/s13024-018-0276-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V et al (2020) Nuclear factor-kappaB dysregulation and alpha-synuclein pathology: critical interplay in the pathogenesis of Parkinson’s disease. Front Aging Neurosci 12:68. https://doi.org/10.3389/fnagi.2020.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baig MS, Zaichick SV, Mao M, de Abreu AL, Bakhshi FR, Hart PC et al (2015) NOS1-derived nitric oxide promotes NF-kappaB transcriptional activity through inhibition of suppressor of cytokine signaling-1. J Exp Med 212:1725–1738. https://doi.org/10.1084/jem.20140654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-kappaB function in the nervous system. Front Immunol 10:1043. https://doi.org/10.3389/fimmu.2019.01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boyko AA, Troyanova NI, Kovalenko EI, Sapozhnikov AM (2017) Similarity and differences in inflammation-related characteristics of the peripheral immune system of patients with Parkinson’s and Alzheimer’s diseases. Int J Mol Sci 18:2633. https://doi.org/10.3390/ijms18122633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Franchi L, Munoz-Planillo R, Núñez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13:325–332. https://doi.org/10.1038/ni.2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen L, Zhang QS, Heng Y, Chen Y, Wang S, Yuan YH et al (2018) NLRP3 inflammasome activation in the thymus of MPTP-induced Parkinsonian mouse model. Toxicol Lett 288:1–8. https://doi.org/10.1016/j.toxlet.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  48. Zhang QS, Heng Y, Chen Y, Luo P, Wen L, Zhang Z et al (2017) A novel bibenzyl compound (20C) protects mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid toxicity by regulating the alpha-synuclein-related inflammatory response. J Pharmacol Exp Ther 363:284–292. https://doi.org/10.1124/jpet.117.244020

    Article  CAS  PubMed  Google Scholar 

  49. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  50. Pellegrini C, Ippolito C, Segnani C, Dolfi A, Errede M, Virgintino D et al (2020) Pathological remodelling of colonic wall following dopaminergic nigrostriatal neurodegeneration. Neurobiol Dis 139:104821. https://doi.org/10.1016/j.nbd.2020.104821

    Article  CAS  PubMed  Google Scholar 

  51. Rong Z, Shen F, Wang Y, Sun L, Wu J, Zhang H et al (2021) Phosphorylated alpha-synuclein and phosphorylated tau-protein in sural nerves may contribute to differentiate Parkinson’s disease from multiple system atrophy and progressive supranuclear paralysis. Neurosci Lett 756:135964. https://doi.org/10.1016/j.neulet.2021.135964

    Article  CAS  PubMed  Google Scholar 

  52. Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487. https://doi.org/10.1101/cshperspect.a020487

    Article  PubMed  PubMed Central  Google Scholar 

  53. Di Liddo R, Piccione M, Schrenk S, Dal Magro C, Cosma C, Padoan A et al (2020) S100B as a new fecal biomarker of inflammatory bowel diseases. Eur Rev Med Pharmacol Sci 24:323–332. https://doi.org/10.26355/eurrev_202001_19929

    Article  PubMed  Google Scholar 

  54. Costa DVS, Moura-Neto V, Bolick DT, Guerrant RL, Fawad JA, Shin JH et al (2021) S100B inhibition attenuates intestinal damage and diarrhea severity during clostridioides difficile infection by modulating inflammatory response. Front Cell Infect Microbiol 11:739874. https://doi.org/10.3389/fcimb.2021.739874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doorn KJ, Moors T, Drukarch B, van de Berg W, Lucassen PJ, van Dam AM (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2:90. https://doi.org/10.1186/s40478-014-0090-1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J et al (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133:303–319. https://doi.org/10.1007/s00401-016-1648-8

    Article  CAS  PubMed  Google Scholar 

  57. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J et al (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. https://doi.org/10.1038/ncomms2534

    Article  CAS  PubMed  Google Scholar 

  58. Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert JM, Raussens V (2015) Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J 471:323–333. https://doi.org/10.1042/BJ20150617

    Article  CAS  PubMed  Google Scholar 

  59. Hoffmann O, Braun JS, Becker D, Halle A, Freyer D, Dagand E et al (2007) TLR2 mediates neuroinflammation and neuronal damage. J Immunol 178:6476–6481. https://doi.org/10.4049/jimmunol.178.10.6476

    Article  CAS  PubMed  Google Scholar 

  60. Xing W, Huang P, Lu Y, Zeng W, Zuo Z (2018) Amantadine attenuates sepsis-induced cognitive dysfunction possibly not through inhibiting toll-like receptor 2. J Mol Med (Berl) 96:391–402. https://doi.org/10.1007/s00109-018-1631-z

    Article  CAS  PubMed  Google Scholar 

  61. Ugalde-Muniz P, Fetter-Pruneda I, Navarro L, Garcia E, Chavarria A (2020) Chronic systemic inflammation exacerbates neurotoxicity in a Parkinson’s disease model. Oxid Med Cell Longev 2020:4807179. https://doi.org/10.1155/2020/4807179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lan F, Zhang N, Holtappels G, De Ruyck N, Krysko O, Van Crombruggen K et al (2018) Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med 198:452–463. https://doi.org/10.1164/rccm.201710-2112OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tian J, Song T, Wang H, Wang W, Ma X, Hu Y (2021) Toll-like receptor 2 antagonist ameliorates type 2 diabetes mellitus associated neuropathic pain by repolarizing pro-inflammatory macrophages. Neurochem Res 46:2276–2284. https://doi.org/10.1007/s11064-021-03365-3

    Article  CAS  PubMed  Google Scholar 

  64. Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C et al (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145:1323–1333. https://doi.org/10.1053/j.gastro.2013.08.047

    Article  CAS  PubMed  Google Scholar 

  65. Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S et al (2019) Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103:627-641.e627. https://doi.org/10.1016/j.neuron.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim C, Rockenstein E, Spencer B, Kim HK, Adame A, Trejo M et al (2015) Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep 13:771–782. https://doi.org/10.1016/j.celrep.2015.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bock S, Murgueitio MS, Wolber G, Weindl G (2016) Acute myeloid leukaemia-derived Langerhans-like cells enhance Th1 polarization upon TLR2 engagement. Pharmacol Res 105:44–53. https://doi.org/10.1016/j.phrs.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  68. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M et al (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  69. Patterson L, Allen J, Posey I, Shaw JJP, Costa-Pinheiro P, Walker SJ et al (2020) Glucosylceramide production maintains colon integrity in response to Bacteroides fragilis toxin-induced colon epithelial cell signaling. Faseb J 34:15922–15945. https://doi.org/10.1096/fj.202001669R

    Article  CAS  PubMed  Google Scholar 

  70. Ahn EH, Kang SS, Liu X, Chen G, Zhang Z, Chandrasekharan B et al (2020) Initiation of Parkinson’s disease from gut to brain by δ-secretase. Cell Res 30:70–87. https://doi.org/10.1038/s41422-019-0241-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All of the authors are grateful to the members of Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology of Nanjing Medical University for the technical assistance.

Funding

The research was supported by National Natural Science Foundation of China (Grant No. 82071431).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: W.J., Y.C., and Y.W.; experimentation: W.J., Y.C., Y.W., J.W., Z.R., L.S., and Y.Z.; writing—original draft: W.J., Y.C., and Y.W.; writing—review and editing: K.Z. and Y.Z.; funding acquisition: K.Z. All of the authors contributed in editing the manuscript and read and approved the publication of the submitted version.

Corresponding authors

Correspondence to Yan Zhou or Kezhong Zhang.

Ethics declarations

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Committee of Nanjing Medical University.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3041 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Cheng, Y., Wang, Y. et al. Involvement of Abnormal p-α-syn Accumulation and TLR2-Mediated Inflammation of Schwann Cells in Enteric Autonomic Nerve Dysfunction of Parkinson’s Disease: an Animal Model Study. Mol Neurobiol 60, 4738–4752 (2023). https://doi.org/10.1007/s12035-023-03345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03345-4

Keywords

Navigation