Skip to main content

Advertisement

Log in

Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data presented in this study have been published by the authors of the cited studies and are openly available.

References

  1. Banjara M, Ghosh C (2017) Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflam 2017:8385961

    PubMed  PubMed Central  Google Scholar 

  2. Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune Netw 18(4):e27

    Article  PubMed  PubMed Central  Google Scholar 

  3. Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101(1):87–98

    Article  CAS  PubMed  Google Scholar 

  4. Thundyil J, Lim KL (2015) DAMPs and neurodegeneration. Ageing Res Rev 24(Pt A):17–28

    Article  CAS  PubMed  Google Scholar 

  5. Rosin DL, Okusa MD (2011) Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 22(3):416–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandes-Alnemri T et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyman M et al (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12

    Article  CAS  PubMed  Google Scholar 

  8. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–77

    Article  CAS  PubMed  Google Scholar 

  9. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–83

    Article  CAS  PubMed  Google Scholar 

  10. de Vries HE et al (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64(1):37–43

    Article  PubMed  Google Scholar 

  11. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kempuraj D et al (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine (1):1003

  13. Fields RD et al (2014) Glial biology in learning and cognition. Neuroscientist 20(5):426–31

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glass CK et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo XG, Chen SD (2012) The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener 1(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo S, Wang H, Yin Y (2022) Microglia polarization from M1 to M2 in neurodegenerative diseaseS. Front Aging Neurosci 14:815347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stephenson J et al (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bachiller S et al (2018) Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967

    Article  CAS  PubMed  Google Scholar 

  20. De Biase LM et al (2017) Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95(2):341-356 e6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12(6):719–32

    Article  PubMed  Google Scholar 

  22. Baufeld C et al (2018) Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm (Vienna) 125(5):809–826

    Article  CAS  PubMed  Google Scholar 

  23. Hickman SE et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hickman S et al (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhan Y et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–6

    Article  CAS  PubMed  Google Scholar 

  26. Scarf AM, Kassiou M (2011) The translocator protein. J Nucl Med 52(5):677–80

    Article  CAS  PubMed  Google Scholar 

  27. Malpetti M et al (2020) Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain 143(5):1588–1602

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bekris LM et al (2018) Soluble TREM2 and biomarkers of central and peripheral inflammation in neurodegenerative disease. J Neuroimmunol 319:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suarez-Calvet M et al (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8(5):466–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620

    Article  CAS  PubMed  Google Scholar 

  31. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saijo K et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carter SF et al (2019) Astrocyte biomarkers in Alzheimer’s disease. Trends Mol Med 25(2):77–95

    Article  CAS  PubMed  Google Scholar 

  36. Mayo L et al (2014) Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20(10):1147–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oksanen M et al (2019) Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 76(14):2739–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian Y et al (2007) The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8(3):247–56

    Article  CAS  PubMed  Google Scholar 

  39. Haroon F et al (2011) Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J Immunol 186(11):6521–31

    Article  CAS  PubMed  Google Scholar 

  40. Drogemuller K et al (2008) Astrocyte gp130 expression is critical for the control of toxoplasma encephalitis. J Immunol 181(4):2683–93

    Article  PubMed  Google Scholar 

  41. Cekanaviciute E et al (2014) Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 62(8):1227–40

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hindinger C et al (2012) IFN-gamma signaling to astrocytes protects from autoimmune mediated neurological disability. PLoS One 7(7):e42088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiwari-Woodruff S et al (2007) Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment. Proc Natl Acad Sci U S A 104(37):14813–8

    Article  PubMed  PubMed Central  Google Scholar 

  44. Okada S et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–34

    Article  CAS  PubMed  Google Scholar 

  45. Islam O, Loo TX, Heese K (2009) Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Curr Neurovasc Res 6(1):42–53

    Article  CAS  PubMed  Google Scholar 

  46. Ceyzeriat K et al (2016) The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330:205–18

    Article  CAS  PubMed  Google Scholar 

  47. Anders HJ, Schaefer L (2014) Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 25(7):1387–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moya GE, Rivera PD, Dittenhafer-Reed KE (2021) Evidence for the role of mitochondrial DNA release in the inflammatory response in neurological disorders. Int J Mol Sci 22(13):7030

  49. Gan M et al (2015) Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol Aging 36(2):1209–20

    Article  CAS  PubMed  Google Scholar 

  50. Cao L et al (2018) Hydrogen sulfide inhibits ATP-induced neuroinflammation and Abeta(1–42) synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav Immun 73:603–614

    Article  CAS  PubMed  Google Scholar 

  51. Lin MM et al (2022) Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol Sin 43(10):2439–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Camponeschi C et al (2021) S100B protein as a therapeutic target in multiple sclerosis: the S100B inhibitor arundic acid protects from chronic experimental autoimmune encephalomyelitis. Int J Mol Sci 22(24)

  53. Sita G et al (2021) NLRP3 and infections: beta-amyloid in inflammasome beyond neurodegeneration. Int J Mol Sci 22(13):6984

  54. Favretto F et al (2020) The molecular basis of the interaction of cyclophilin A with alpha-synuclein. Angew Chem Int Ed Engl 59(14):5643–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nigro P, Pompilio G, Capogrossi MC (2013) Cyclophilin A: a key player for human disease. Cell Death Dis 4(10):e888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dursun E et al (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283:50–7

    Article  CAS  PubMed  Google Scholar 

  57. Brough D, Denes A (2015) Interleukin-1alpha and brain inflammation. IUBMB Life 67(5):323–30

    Article  CAS  PubMed  Google Scholar 

  58. Reid KM et al (2022) Brain cells release calreticulin that attracts and activates microglia, and inhibits amyloid beta aggregation and neurotoxicity. Front Immunol 13:859686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anfinogenova ND et al (2020) Alarmins and c-Jun N-terminal Kinase (JNK) signaling in neuroinflammation. Cells 9(11):2350

  60. Jafarzadeh A et al (2019) The toll-like receptor 2 (TLR2)-related immunopathological responses in the multiple sclerosis and experimental autoimmune encephalomyelitis. Iran J Allergy Asthma Immunol 18(3):230–250

    PubMed  Google Scholar 

  61. Liu GT et al (2013) Eosinophil-derived neurotoxin is elevated in patients with amyotrophic lateral sclerosis. Mediators Inflamm 2013:421389

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hudak A et al (2019) Contribution of syndecans to cellular uptake and fibrillation of alpha-synuclein and tau. Sci Rep 9(1):16543

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ma K et al (2021) Glypican 4 regulates abeta internalization in neural stem cells partly via low-density lipoprotein receptor-related protein 1. Front Cell Neurosci 15:732429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010:672395

  65. Tang D et al (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burns K et al (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197(2):263–8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Okun E et al (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–92

    Article  CAS  PubMed  Google Scholar 

  68. Ramasamy R, Yan SF, Schmidt AM (2009) RAGE: therapeutic target and biomarker of the inflammatory response–the evidence mounts. J Leukoc Biol 86(3):505–12

    Article  CAS  PubMed  Google Scholar 

  69. Vajjhala PR, Mirams RE, Hill JM (2012) Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem 287(50):41732–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ting JP et al (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Proell M et al (2013) The CARD plays a critical role in ASC foci formation and inflammasome signalling. Biochem J 449(3):613–21

    Article  CAS  PubMed  Google Scholar 

  72. Fernandes-Alnemri T et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14(9):1590–604

    Article  CAS  PubMed  Google Scholar 

  73. Fernandes-Alnemri T, Alnemri ES (2008) Assembly, purification, and assay of the activity of the ASC pyroptosome. Methods Enzymol 442:251–70

    Article  CAS  PubMed  Google Scholar 

  74. Maeda A, Fadeel B (2014) Mitochondria released by cells undergoing TNF-alpha-induced necroptosis act as danger signals. Cell Death Dis 5:e1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Q et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Krysko DV et al (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32(4):157–64

    Article  CAS  PubMed  Google Scholar 

  77. Wenceslau CF et al (2014) Mitochondrial damage-associated molecular patterns and vascular function. Eur Heart J 35(18):1172–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Little JP et al (2014) Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia. Mol Cell Neurosci 60:88–96

    Article  CAS  PubMed  Google Scholar 

  79. Gambardella S et al (2019) ccf-mtDNA as a potential link between the brain and immune system in neuro-immunological disorders. Front Immunol 10:1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Annesley SJ, Fisher PR (2019) Mitochondria in health and disease. Cells 8(7):680

  81. McArthur K et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359(6378):eaao6047

  82. Riley JS et al (2018) Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J 37(17):e99238

  83. Zhang X et al (2019) Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci 236:116464

    Article  CAS  PubMed  Google Scholar 

  84. Bours MJ et al (2006) Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404

    Article  CAS  PubMed  Google Scholar 

  85. Garg C et al (2018) Trovafloxacin attenuates neuroinflammation and improves outcome after traumatic brain injury in mice. J Neuroinflammation 15(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  86. Alarcon-Vila C, Pizzuto M, Pelegrin P (2019) Purinergic receptors and the inflammatory response mediated by lipids. Curr Opin Pharmacol 47:90–96

    Article  CAS  PubMed  Google Scholar 

  87. Illes P (2020) P2X7 receptors amplify CNS damage in neurodegenerative diseases. Int J Mol Sci 21(17):5996

  88. Liu ZQ et al (2020) NADPH protects against kainic acid-induced excitotoxicity via autophagy-lysosome pathway in rat striatum and primary cortical neurons. Toxicology 435:152408

    Article  CAS  PubMed  Google Scholar 

  89. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163(3):560–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29(12):4766–71

    Article  CAS  PubMed  Google Scholar 

  91. Fetisova E et al (2017) Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem 24(19):2086–2114

    Article  CAS  PubMed  Google Scholar 

  92. Liu Q et al (2018) The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol 103:115–124

    Article  CAS  PubMed  Google Scholar 

  93. Yang H et al (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93(6):865–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schindler SM et al (2018) Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Mol Cell Neurosci 89:71–79

    Article  CAS  PubMed  Google Scholar 

  95. Ray R, Juranek JK, Rai V (2016) RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 62:48–55

    Article  CAS  PubMed  Google Scholar 

  96. Kono H et al (2010) Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 120(6):1939–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–21

    Article  CAS  PubMed  Google Scholar 

  98. Johnson RJ et al (2005) Uric acid, evolution and primitive cultures. Semin Nephrol 25(1):3–8

    Article  CAS  PubMed  Google Scholar 

  99. Cutler RG et al (2015) The role of uric acid and methyl derivatives in the prevention of age-related neurodegenerative disorders. Curr Top Med Chem 15(21):2233–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donato R et al (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xia C et al (2017) S100 proteins as an important regulator of macrophage inflammation. Front Immunol 8:1908

    Article  PubMed  Google Scholar 

  102. Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–9

    Article  CAS  PubMed  Google Scholar 

  103. Hofmann MA et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901

    Article  CAS  PubMed  Google Scholar 

  104. Gruden MA et al (2007) Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta((25–35)) oligomers, S100b and neurotransmitters. J Neuroimmunol 186(1–2):181–92

    Article  CAS  PubMed  Google Scholar 

  105. Anderson PJ et al (2009) Differential effects of interleukin-1beta and S100B on amyloid precursor protein in rat retinal neurons. Clin Ophthalmol 3:235–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mori T et al (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58(3):300–14

    PubMed  PubMed Central  Google Scholar 

  107. Van Eldik LJ, Griffin WS (1994) S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta 1223(3):398–403

    Article  PubMed  Google Scholar 

  108. Simpson JE et al (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31(4):578–90

    Article  CAS  PubMed  Google Scholar 

  109. Roltsch E et al (2010) PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cirillo C et al (2015) S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. Biomed Res Int 2015:508342

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zimmer DB et al (2005) S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol (Noisy-le-grand) 51(2):201–14

    CAS  PubMed  Google Scholar 

  112. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104(6):1433–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weissmann R et al (2016) Gene expression profiling in the APP/PS1KI mouse model of familial Alzheimer’s disease. J Alzheimers Dis 50(2):397–409

    Article  CAS  PubMed  Google Scholar 

  114. Mueller C et al (2010) The heme degradation pathway is a promising serum biomarker source for the early detection of Alzheimer’s disease. J Alzheimers Dis 19(3):1081–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qin W et al (2009) S100A7, a novel Alzheimer’s disease biomarker with non-amyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10. PLoS One 4(1):e4183

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shen L et al (2017) Proteomics analysis of blood serums from Alzheimer’s disease patients using iTRAQ labeling technology. J Alzheimers Dis 56(1):361–378

    Article  CAS  PubMed  Google Scholar 

  117. Lodeiro M et al (2017) Aggregation of the inflammatory S100A8 precedes abeta plaque formation in transgenic APP mice: positive feedback for S100A8 and abeta productions. J Gerontol A Biol Sci Med Sci 72(3):319–328

    CAS  PubMed  Google Scholar 

  118. Liu L et al (2005) S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J Neurochem 92(3):546–53

    Article  CAS  PubMed  Google Scholar 

  119. Roche S et al (2007) Candidate gene analysis of 21q22: support for S100B as a susceptibility gene for bipolar affective disorder with psychosis. Am J Med Genet B Neuropsychiatr Genet 144B(8):1094–6

    Article  CAS  PubMed  Google Scholar 

  120. Sorci G et al (2010) S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc Psychiatry Neurol 2010:656481

  121. Sathe K et al (2012) S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-alpha pathway. Brain 135(Pt 11):3336–47

    Article  PubMed  PubMed Central  Google Scholar 

  122. Basu S et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12(11):1539–46

    Article  CAS  PubMed  Google Scholar 

  123. Buxbaum JD et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18(23):9629–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83(5):711–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Falsig J et al (2008) Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 86(7):1434–47

    Article  CAS  PubMed  Google Scholar 

  126. Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Munoz-Planillo R et al (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nigro P, Pompilio G, Capogrossi MC (2013) Cyclophilin A: a key player for human disease. Cell Death Dis 4:e888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bell RD et al (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485(7399):512–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kanyenda LJ et al (2011) The dynamics of CD147 in Alzheimer’s disease development and pathology. J Alzheimers Dis 26(4):593–605

    Article  CAS  PubMed  Google Scholar 

  131. Spisni E et al (2009) Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons. Neurotoxicology 30(4):605–12

    Article  CAS  PubMed  Google Scholar 

  132. Cookson MR et al (2002) Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress. Amyotroph Lateral Scler Other Motor Neuron Disord 3(2):75–85

    Article  CAS  PubMed  Google Scholar 

  133. Massignan T et al (2007) Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. Biochem Biophys Res Commun 353(3):719–25

    Article  CAS  PubMed  Google Scholar 

  134. Tanaka H et al (2011) Apoptosis-inducing factor and cyclophilin A cotranslocate to the motor neuronal nuclei in amyotrophic lateral sclerosis model mice. CNS Neurosci Ther 17(5):294–304

    Article  CAS  PubMed  Google Scholar 

  135. Nardo G et al (2011) Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS One 6(10):e25545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pisetsky DS (2014) The translocation of nuclear molecules during inflammation and cell death. Antioxid Redox Signal 20(7):1117–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Muller S et al (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20(16):4337–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang H et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425):248–51

    Article  CAS  PubMed  Google Scholar 

  139. Rovere-Querini P et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5(8):825–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–5

    Article  CAS  PubMed  Google Scholar 

  141. Allam R et al (2012) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 23(8):1375–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xu J et al (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tran TT, Groben P, Pisetsky DS (2008) The release of DNA into the plasma of mice following hepatic cell death by apoptosis and necrosis. Biomarkers 13(2):184–200

    Article  CAS  PubMed  Google Scholar 

  144. Jiang N, Reich CF 3rd, Pisetsky DS (2003) Role of macrophages in the generation of circulating blood nucleosomes from dead and dying cells. Blood 102(6):2243–50

    Article  CAS  PubMed  Google Scholar 

  145. Bolton SJ et al (1999) Non-nuclear histone H1 is upregulated in neurones and astrocytes in prion and Alzheimer’s diseases but not in acute neurodegeneration. Neuropathol Appl Neurobiol 25(5):425–32

    Article  CAS  PubMed  Google Scholar 

  146. Gilthorpe JD et al (2013) Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia. F1000Res 2:148

  147. Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17(3):189–201

    Article  CAS  PubMed  Google Scholar 

  148. Fang P, Schachner M, Shen YQ (2012) HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 45(3):499–506

    Article  CAS  PubMed  Google Scholar 

  149. Fossati S, Chiarugi A (2007) Relevance of high-mobility group protein box 1 to neurodegeneration. Int Rev Neurobiol 82:137–48

    Article  CAS  PubMed  Google Scholar 

  150. Takata K et al (2004) High mobility group box protein-1 inhibits microglial Abeta clearance and enhances Abeta neurotoxicity. J Neurosci Res 78(6):880–91

    Article  CAS  PubMed  Google Scholar 

  151. Mazarati A et al (2011) High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol 232(2):143–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jang A et al (2013) p35 deficiency accelerates HMGB-1-mediated neuronal death in the early stages of an Alzheimer’s disease mouse model. Curr Alzheimer Res 10(8):829–43

    Article  CAS  PubMed  Google Scholar 

  153. Song JX et al (2014) HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10(1):144–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Min HJ et al (2013) Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J Immunol 190(4):1797–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Qi ML et al (2007) Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat Cell Biol 9(4):402–14

    Article  CAS  PubMed  Google Scholar 

  156. Coppolino MG, Dedhar S (1998) Calreticulin. Int J Biochem Cell Biol 30(5):553–8

    Article  CAS  PubMed  Google Scholar 

  157. Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 91(3):913–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gardai SJ et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–34

    Article  CAS  PubMed  Google Scholar 

  159. Bajor A et al (2011) Modulatory role of calreticulin as chaperokine for dendritic cell-based immunotherapy. Clin Exp Immunol 165(2):220–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cockram TOJ, Puigdellivol M, Brown GC (2019) Calreticulin and galectin-3 opsonise bacteria for phagocytosis by microglia. Front Immunol 10:2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61

    Article  CAS  PubMed  Google Scholar 

  162. Galluzzi L et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111

    Article  CAS  PubMed  Google Scholar 

  163. Brifault C et al (2017) Shedding of membrane-associated LDL receptor-related protein-1 from microglia amplifies and sustains neuroinflammation. J Biol Chem 292(45):18699–18712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li Y et al (2015) Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39–272. Int J Clin Exp Med 8(5):7288–96

    PubMed  PubMed Central  Google Scholar 

  165. Erickson RR et al (2005) In cerebrospinal fluid ER chaperones ERp57 and calreticulin bind beta-amyloid. Biochem Biophys Res Commun 332(1):50–7

    Article  CAS  PubMed  Google Scholar 

  166. Duus K, Hansen PR, Houen G (2008) Interaction of calreticulin with amyloid beta peptide 1–42. Protein Pept Lett 15(1):103–7

    Article  CAS  PubMed  Google Scholar 

  167. Davis CH et al (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111(26):9633–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hayakawa K et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Walko TD 3rd et al (2014) Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock 41(6):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pinti M et al (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging.” Eur J Immunol 44(5):1552–62

    Article  CAS  PubMed  Google Scholar 

  171. Podlesniy P et al (2013) Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol 74(5):655–68

    Article  CAS  PubMed  Google Scholar 

  172. Steiner J et al (2011) S100B protein in neurodegenerative disorders. Clin Chem Lab Med 49(3):409–24

    Article  CAS  PubMed  Google Scholar 

  173. Sasaki T et al (2016) Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease. Exp Neurol 275(Pt 1):220–31

    Article  CAS  PubMed  Google Scholar 

  174. Gonzalez LL, Garrie K, Turner MD (2020) Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res 1867(6):118677

    Article  CAS  PubMed  Google Scholar 

  175. Mori T et al (2006) Arundic acid ameliorates cerebral amyloidosis and gliosis in Alzheimer transgenic mice. J Pharmacol Exp Ther 318(2):571–8

    Article  CAS  PubMed  Google Scholar 

  176. Kato H et al (2004) Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice. Brain Res 1030(1):66–73

    Article  CAS  PubMed  Google Scholar 

  177. Madav Y, Wairkar S, Prabhakar B (2019) Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res Bull 146:171–184

    Article  CAS  PubMed  Google Scholar 

  178. Capiralla H et al (2012) Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120(3):461–72

    Article  CAS  PubMed  Google Scholar 

  179. Liu CY et al (2019) Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci 13:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Acuna L et al (2019) Rifampicin and its derivative rifampicin quinone reduce microglial inflammatory responses and neurodegeneration induced in vitro by alpha-synuclein fibrillary aggregates. Cells 8(8):776

  181. Hughes CD et al (2019) Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 to play an initiating role in Parkinson’s disease pathogenesis. Acta Neuropathol 137(1):103–120

    Article  CAS  PubMed  Google Scholar 

  182. Kim BW et al (2015) alpha-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson’s disease. Neuropharmacology 97:46–57

    Article  CAS  PubMed  Google Scholar 

  183. Wang S et al (2015) Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J Ethnopharmacol 164:247–55

    Article  CAS  PubMed  Google Scholar 

  184. Webster SJ et al (2012) An aqueous orally active vaccine targeted against a RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular Med 14(2):119–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Government of India, for their support. NIPER, Raebareli communication number for this manuscript is NIPER-R/Communication/370.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jasleen Kaur. The first draft of the manuscript was written by Jasleen Kaur. Diagram illustrations were done by Harsimar Singh, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Saba Naqvi.

Ethics declarations

Ethics Approval

This is an observational study and no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Singh, H. & Naqvi, S. Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 60, 3600–3616 (2023). https://doi.org/10.1007/s12035-023-03289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03289-9

Keywords

Navigation