Skip to main content

Advertisement

Log in

Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  3. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108(12):3646–3653. https://doi.org/10.1182/blood-2006-01-030015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeVeale B, Swindlehurst-Chan J, Blelloch R (2021) The roles of microRNAs in mouse development. Nat Rev Genet 22(5):307–323. https://doi.org/10.1038/s41576-020-00309-5

    Article  CAS  PubMed  Google Scholar 

  5. Hartig SM, Hamilton MP, Bader DA, McGuire SE (2015) The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab 26(12):733–745. https://doi.org/10.1016/j.tem.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juzwik CA, SD S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A et al (2019) microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664. https://doi.org/10.1016/j.pneurobio.2019.101664

    Article  CAS  PubMed  Google Scholar 

  7. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739. https://doi.org/10.1016/s0960-9822(02)00809-6

    Article  CAS  PubMed  Google Scholar 

  8. Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY et al (2011) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39(7):2869–2879. https://doi.org/10.1093/nar/gkq904

    Article  CAS  PubMed  Google Scholar 

  9. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408. https://doi.org/10.1038/nn.2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Shu X, Liu D, Shang Y, Wu Y, Pei L et al (2012) EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73(4):774–788. https://doi.org/10.1016/j.neuron.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sasidharan V, Marepally S, Elliott SA, Baid S, Lakshmanan V, Nayyar N et al (2017) The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development 144(18):3211–3223. https://doi.org/10.1242/dev.144758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chivero ET, Liao K, Niu F, Tripathi A, Tian CH, Buch S et al (2020) Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia. Front Cell Dev Biol 8:573. https://doi.org/10.3389/fcell.2020.00573

    Article  PubMed  PubMed Central  Google Scholar 

  13. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749. https://doi.org/10.1101/gad.1519107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448. https://doi.org/10.1016/j.molcel.2007.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y et al (2011) miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14(9):1125–1134. https://doi.org/10.1038/nn.2897

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Luo ZM, Guo XM, Su DF, Liu X (2015) An updated role of microRNA-124 in central nervous system disorders: a review. Fron Cell Neurosci 9:193. https://doi.org/10.3389/fncel.2015.00193

    Article  CAS  Google Scholar 

  17. Choi C, Kim T, Chang KT, Min KT (2019) DSCR1-mediated TET1 splicing regulates miR-124 expression to control adult hippocampal neurogenesis. Embo J 38(14):e101293. https://doi.org/10.15252/embj.2018101293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong Y, Wu CN, Xu J, Feng G, Xing QH, Fu W et al (2013) Polymorphisms in microRNA target sites influence susceptibility to schizophrenia by altering the binding of miRNAs to their targets. Eur Neuropsychopharmacol 23(10):1182–1189. https://doi.org/10.1016/j.euroneuro.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Akerblom M, Sachdeva R, Barde I, Verp S, Gentner B, Trono D et al (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32(26):8879–8889. https://doi.org/10.1523/Jneurosci.0558-12.2012

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development (vol 460, pg 642, 2009). Nature 461(7261):296. https://doi.org/10.1038/nature08359

    Article  CAS  Google Scholar 

  21. Volvert ML, Prevot PP, Close P, Laguesse S, Pirotte S, Hemphill J et al (2014) MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Cell Rep 7(4):1168–1183. https://doi.org/10.1016/j.celrep.2014.03.075

    Article  CAS  PubMed  Google Scholar 

  22. Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314(14):2618–2633. https://doi.org/10.1016/j.yexcr.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu X, Meng S, Liu S, Jia C, Fang Y, Li S et al (2014) miR-124 represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway. J Mol Neurosci 52(1):156–165. https://doi.org/10.1007/s12031-013-0190-6

    Article  CAS  PubMed  Google Scholar 

  24. Zheng S, Gray EE, Chawla G, Porse BT, O'Dell TJ, Black DL (2012) PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci 15(3):381–U202. https://doi.org/10.1038/nn.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li GF, Ling SC (2017) MiR-124 promotes newborn olfactory bulb neuron dendritic morphogenesis and spine density. J Mol Neurosci 61(2):159–168. https://doi.org/10.1007/s12031-016-0873-x

    Article  CAS  PubMed  Google Scholar 

  26. Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24(11):2437–2447. https://doi.org/10.1634/stemcells.2005-0661

    Article  CAS  PubMed  Google Scholar 

  27. Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. Embo J 18(8):2196–2207. https://doi.org/10.1093/emboj/18.8.2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al (2000) The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 192(9):1365–1372. https://doi.org/10.1084/jem.192.9.1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U et al (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. Embo J 24(19):3504–3515. https://doi.org/10.1038/sj.emboj.7600816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW et al (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442(7104):823–826. https://doi.org/10.1038/nature04940

    Article  CAS  PubMed  Google Scholar 

  31. Jiao SJ, Liu YL, Yao YB, Teng JF (2017) miR-124 promotes proliferation and differentiation of neuronal stem cells through inactivating Notch pathway. Cell Biosci 7:68. https://doi.org/10.1186/s13578-017-0194-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farrell BC, Power EM, Mc Dermott KW (2011) Developmentally regulated expression of Sox9 and microRNAs 124, 128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci 29(1):31–36. https://doi.org/10.1016/j.ijdevneu.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  33. Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M, Gomez Gaviro MV et al (2010) SOX9 induces and maintains neural stem cells. Nat Neurosci 13(10):1181–1189. https://doi.org/10.1038/nn.2646

    Article  CAS  PubMed  Google Scholar 

  34. Hong CS, Saint-Jeannet JP (2005) Sox proteins and neural crest development. Semin Cell Dev Biol 16(6):694–703. https://doi.org/10.1016/j.semcdb.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  35. Fabra-Beser J, Medeiros A, de Araujo J, Marques-Coelho D, Goff LA, Costa MR, Muller U et al (2021) Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation. J Neurosci 41(33):6969–6986. https://doi.org/10.1523/JNEUROSCI.2905-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor MK, Yeager K, Morrison SJ (2007) Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134(13):2435–2447. https://doi.org/10.1242/dev.005520

    Article  CAS  PubMed  Google Scholar 

  37. Martini S, Bernoth K, Main H, Ortega GD, Lendahl U, Just U et al (2013) A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance. Stem Cells 31(4):741–751. https://doi.org/10.1002/stem.1320

    Article  CAS  PubMed  Google Scholar 

  38. Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB et al (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74(1):79–94. https://doi.org/10.1016/j.neuron.2012.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC et al (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80(6):949–957. https://doi.org/10.1016/0092-8674(95)90298-8

    Article  CAS  PubMed  Google Scholar 

  40. Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15(5):500–506. https://doi.org/10.1016/j.conb.2005.08.015

    Article  CAS  PubMed  Google Scholar 

  41. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M et al (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 101(28):10458–10463. https://doi.org/10.1073/pnas.0401827101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee SW, Oh YM, Lu YL, Kim WK, Yoo AS (2018) MicroRNAs overcome cell fate barrier by reducing EZH2-controlled REST stability during neuronal conversion of human adult fibroblasts. Dev Cell 46(1):73–84. https://doi.org/10.1016/j.devcel.2018.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Muller B et al (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–265. https://doi.org/10.1007/s00401-013-1142-5

    Article  CAS  PubMed  Google Scholar 

  44. Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307(5709):596–600. https://doi.org/10.1126/science.1100801

    Article  CAS  PubMed  Google Scholar 

  45. Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J et al (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci U S A 96(17):9873–9878. https://doi.org/10.1073/pnas.96.17.9873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martens JA, Winston F (2003) Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13(2):136–142. https://doi.org/10.1016/s0959-437x(03)00022-4

    Article  CAS  PubMed  Google Scholar 

  47. Son EY, Crabtree GR (2014) The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am J Med Genet C 166(3):333–349. https://doi.org/10.1002/ajmg.c.31416

    Article  CAS  Google Scholar 

  48. Yoo AS, Crabtree GR (2009) ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 19(2):120–126. https://doi.org/10.1016/j.conb.2009.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460(7255):642–646. https://doi.org/10.1038/nature08139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231. https://doi.org/10.1038/nature10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Staahl BT, Crabtree GR (2013) Creating a neural specific chromatin landscape by npBAF and nBAF complexes. Curr Opin Neurobiol 23(6):903–913. https://doi.org/10.1016/j.conb.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  52. Braun SMG, Petrova R, Tang J, Krokhotin A, Miller EL, Tang Y et al (2021) BAF subunit switching regulates chromatin accessibility to control cell cycle exit in the developing mammalian cortex. Genes Dev 35(5-6):335–353. https://doi.org/10.1101/gad.342345.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang ZL, Cao M, Chang CW, Wang C, Shi XM, Zhan XM et al (2016) Autism-associated chromatin regulator Brg1/SmarcA4 is required for synapse development and myocyte enhancer factor 2-mediated synapse remodeling. Mol Cell Biol 36(1):70–83. https://doi.org/10.1128/Mcb.00534-15

    Article  PubMed  Google Scholar 

  54. Rowland ME, Jajarmi JM, Osborne TSM, Ciernia AV (2022) Insights into the emerging role of Baf53b in autism spectrum disorder. Fron Mol Neurosci 15:805158. https://doi.org/10.3389/fnmol.2022.805158

    Article  CAS  Google Scholar 

  55. Lamba DA, Hayes S, Karl MO, Reh T (2008) Baf60c is a component of the neural progenitor-specific BAF complex in developing retina. Dev Dyn 237(10):3016–3023. https://doi.org/10.1002/dvdy.21697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K et al (2007) Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A 104(3):846–851. https://doi.org/10.1073/pnas.0608118104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490. https://doi.org/10.1146/annurev.neuro.25.030702.130823

    Article  CAS  PubMed  Google Scholar 

  58. Battaglioli E, Andres ME, Rose DW, Chenoweth JG, Rosenfeld MG, Anderson ME et al (2002) REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem 277(43):41038–41045. https://doi.org/10.1074/jbc.M205691200

    Article  CAS  PubMed  Google Scholar 

  59. Ooi L, Belyaev ND, Miyake K, Wood IC, Buckley NJ (2006) BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression. J Biol Chem 281(51):38974–38980. https://doi.org/10.1074/jbc.M605370200

    Article  CAS  PubMed  Google Scholar 

  60. Li Q, Zheng S, Han A, Lin CH, Stoilov P, Fu XD et al (2014) The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. Elife 3:e01201. https://doi.org/10.7554/eLife.01201

    Article  PubMed  PubMed Central  Google Scholar 

  61. Papagiannakopoulos T, Kosik KS (2009) MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4(5):375–376. https://doi.org/10.1016/j.stem.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  62. Zhang M, Ergin V, Lin L, Stork C, Chen L, Zheng SK (2019) Axonogenesis is coordinated by neuron-specific alternative splicing programming and splicing regulator PTBP2. Neuron 101(4):690. https://doi.org/10.1016/j.neuron.2019.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Linares AJ, Lin CH, Damianov A, Adams KL, Novitch BG, Black DL (2015) The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Elife 4:e09268. https://doi.org/10.7554/eLife.09268

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27(10):3769–3779. https://doi.org/10.1128/MCB.01432-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21(13):4330–4336. https://doi.org/10.1128/MCB.21.13.4330-4336.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chou RH, Yu YL, Hung MC (2011) The roles of EZH2 in cell lineage commitment. Am J Transl Res 3(3):243–250

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Henriquez B, Bustos FJ, Aguilar R, Becerra A, Simon F, Montecino M et al (2013) Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol Cell Neurosci 57:130–143. https://doi.org/10.1016/j.mcn.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  68. Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J et al (2009) Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63(5):600–613. https://doi.org/10.1016/j.neuron.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  69. Neo WH, Yap K, Lee SH, Looi LS, Khandelia P, Neo SX et al (2014) MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression. J Biol Chem 289(30):20788–20801. https://doi.org/10.1074/jbc.M113.525493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guajardo L, Aguilar R, Bustos FJ, Nardocci G, Gutierrez RA, van Zundert B et al (2020) Downregulation of the polycomb-associated methyltransferase Ezh2 during maturation of hippocampal neurons is mediated by microRNAs Let-7 and miR-124. Int J Mol Sci 21(22). https://doi.org/10.3390/ijms21228472

  71. Qi C, Liu S, Qin R, Zhang Y, Wang G, Shang Y et al (2014) Coordinated regulation of dendrite arborization by epigenetic factors CDYL and EZH2. J Neurosci 34(13):4494–4508. https://doi.org/10.1523/JNEUROSCI.3647-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang M, Zhang Y, Xu Q, Crawford J, Qian C, Wang G-H et al (2019) Neuronal histone methyltransferase EZH2 regulates neuronal morphogenesis, synaptic plasticity, and cognitive behavior of mice. bioRxiv:582908. https://doi.org/10.1101/582908

  73. Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N et al (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23(6):839–852. https://doi.org/10.1016/j.ccr.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Batool A, Jin C, Liu YX (2019) Role of EZH2 in cell lineage determination and relative signaling pathways. Front Biosci (Landmark Ed) 24(5):947–960. https://doi.org/10.2741/4760

    Article  PubMed  Google Scholar 

  75. Zemke M, Draganova K, Klug A, Scholer A, Zurkirchen L, Gay MHP et al (2015) Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. Bmc Biol. 13(1):1–14. https://doi.org/10.1186/s12915-015-0210-9

    Article  CAS  Google Scholar 

  76. Juliandi B, Abematsu M, Nakashima K (2010) Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 52(6):493–504. https://doi.org/10.1111/j.1440-169X.2010.01175.x

    Article  CAS  PubMed  Google Scholar 

  77. Geng L, Liu W, Chen Y (2017) miR-124-3p attenuates MPP(+)-induced neuronal injury by targeting STAT3 in SH-SY5Y cells. Exp Biol Med (Maywood) 242(18):1757–1764. https://doi.org/10.1177/1535370217734492

    Article  CAS  PubMed  Google Scholar 

  78. Kerek R, Geoffroy A, Bison A, Martin N, Akchiche N, Pourie G et al (2013) Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death Dis 4(8):e755. https://doi.org/10.1038/cddis.2013.278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD et al (2013) miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res 73(13):3913–3926. https://doi.org/10.1158/0008-5472.Can-12-4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864. https://doi.org/10.1634/stemcells.2005-0441

    Article  CAS  PubMed  Google Scholar 

  81. Kong XJ, Gong Z, Zhang L, Sun XD, Ou ZR, Xu B et al (2019) JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun 79:159–173. https://doi.org/10.1016/j.bbi.2019.01.027

    Article  CAS  PubMed  Google Scholar 

  82. Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T et al (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16(2):245–255. https://doi.org/10.1016/j.devcel.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  83. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 6(6):547–554. https://doi.org/10.1038/ncb1138

    Article  CAS  PubMed  Google Scholar 

  84. Ito K, Noguchi A, Uosaki Y, Taga T, Arakawa H, Takizawa T (2018) Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes. Mol Biol Cell 29(2):209–219. https://doi.org/10.1091/mbc.E17-05-0271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foshay KM, Gallicano GI (2008) Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev 17(2):269–278. https://doi.org/10.1089/scd.2007.0098

    Article  CAS  PubMed  Google Scholar 

  86. Michibata H, Okuno T, Konishi N, Wakimoto K, Kyono K, Aoki K et al (2008) Inhibition of mouse GPM6A expression leads to decreased differentiation of neurons derived from mouse embryonic stem cells. Stem Cells Dev 17(4):641–651. https://doi.org/10.1089/scd.2008.0088

    Article  CAS  PubMed  Google Scholar 

  87. Alfonso J, Fernandez ME, Cooper B, Flugge G, Frasch AC (2005) The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. Proc Natl Acad Sci U S A 102(47):17196–17201. https://doi.org/10.1073/pnas.0504262102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Michibata H, Okuno T, Konishi N, Kyono K, Wakimoto K, Aoki K et al (2009) Human GPM6A is associated with differentiation and neuronal migration of neurons derived from human embryonic stem cells. Stem Cells Dev 18(4):629–639. https://doi.org/10.1089/scd.2008.0215

    Article  CAS  PubMed  Google Scholar 

  89. Mita S, de Monasterio-Schrader P, Funfschilling U, Kawasaki T, Mizuno H, Iwasato T et al (2015) Transcallosal projections require glycoprotein M6-dependent neurite growth and guidance. Cereb Cortex 25(11):4111–4125. https://doi.org/10.1093/cercor/bhu129

    Article  PubMed  Google Scholar 

  90. Gu X, Fu C, Lin L, Liu S, Su X, Li A et al (2018) miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway. J Cell Physiol 233(1):673–687. https://doi.org/10.1002/jcp.25927

    Article  CAS  PubMed  Google Scholar 

  91. Honda A, Ito Y, Takahashi-Niki K, Matsushita N, Nozumi M, Tabata H et al (2017) Extracellular signals induce glycoprotein M6a clustering of lipid rafts and associated signaling molecules. J Neurosci 37(15):4046–4064. https://doi.org/10.1523/JNEUROSCI.3319-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Igarashi M, Honda A, Kawasaki A, Nozumi M (2020) Neuronal signaling involved in neuronal polarization and growth: lipid rafts and phosphorylation. Front Mol Neurosci 13:150. https://doi.org/10.3389/fnmol.2020.00150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fan J, Sammalkorpi M, Haataja M (2010) Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett 584(9):1678–1684. https://doi.org/10.1016/j.febslet.2009.10.051

    Article  CAS  PubMed  Google Scholar 

  94. Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T et al (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275(44):34701–34709. https://doi.org/10.1074/jbc.M003163200

    Article  CAS  PubMed  Google Scholar 

  95. Namba T, Kibe Y, Funahashi Y, Nakamuta S, Takano T, Ueno T et al (2014) Pioneering axons regulate neuronal polarization in the developing cerebral cortex. Neuron 81(4):814–829. https://doi.org/10.1016/j.neuron.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y, Wang D, Guo D (2016) MiR-124 promote neurogenic transdifferentiation of adipose derived mesenchymal stromal cells partly through RhoA/ROCK1, but not ROCK2 signaling pathway. PLoS One 11(1):e0146646. https://doi.org/10.1371/journal.pone.0146646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q et al (2019) ROCK1 promotes migration and invasion of nonsmallcell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 55(4):833–844. https://doi.org/10.3892/ijo.2019.4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vemula S, Shi JJ, Hanneman P, Wei L, Kapur R (2010) ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability. Blood 115(9):1785–1796. https://doi.org/10.1182/blood-2009-08-237222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162(7):1267–1279. https://doi.org/10.1083/jcb.200304021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S et al (2008) Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev Cell 14(2):205–215. https://doi.org/10.1016/j.devcel.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  101. Wilson C, Giono LE, Rozes-Salvador V, Fiszbein A, Kornblihtt AR, Caceres A (2020) The histone methyltransferase G9a controls axon growth by targeting the RhoA signaling pathway. Cell Rep 31(6):107639. https://doi.org/10.1016/j.celrep.2020.107639

    Article  CAS  PubMed  Google Scholar 

  102. Peng ZM, Li X, Fu MX, Zhu K, Long LL, Zhao XY et al (2019) Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 150(6):709–722. https://doi.org/10.1111/jnc.14833

    Article  CAS  PubMed  Google Scholar 

  103. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103(7):2422–2427. https://doi.org/10.1073/pnas.0511041103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yeom KH, Mitchell S, Linares AJ, Zheng S, Lin CH, Wang XJ et al (2018) Polypyrimidine tract-binding protein blocks miRNA-124 biogenesis to enforce its neuronal-specific expression in the mouse. Proc Natl Acad Sci U S A 115(47):E11061–E11E70. https://doi.org/10.1073/pnas.1809609115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121(4):645–657. https://doi.org/10.1016/j.cell.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  106. Patterson D (2009) Molecular genetic analysis of Down syndrome. Hum Genet 126(1):195–214. https://doi.org/10.1007/s00439-009-0696-8

    Article  CAS  PubMed  Google Scholar 

  107. Fuentes JJ, Pritchard MA, Planas AM, Bosch A, Ferrer I, Estivill X (1995) A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum Mol Genet 4(10):1935–1944. https://doi.org/10.1093/hmg/4.10.1935

    Article  CAS  PubMed  Google Scholar 

  108. Shaw JL, Zhang SX, Chang KT (2015) Bidirectional regulation of amyloid precursor protein-induced memory defects by Nebula/DSCR1: a protein upregulated in Alzheimer’s disease and down syndrome. J Neurosci 35(32):11374–11383. https://doi.org/10.1523/Jneurosci.1163-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chang KT, Shi YJ, Min KT (2003) The Drosophila homolog of Down’s syndrome critical region 1 gene regulates learning: implications for mental retardation. Proc Natl Acad Sci U S A 100(26):15794–15799. https://doi.org/10.1073/pnas.2536696100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Carter MT, Scherer SW (2013) Autism spectrum disorder in the genetics clinic: a review. Clin Genet 83(5):399–407. https://doi.org/10.1111/cge.12101

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Y, Pang Y, Feng W, Jin Y, Chen S, Ding S et al (2022) miR-124 regulates early isolation-induced social abnormalities via inhibiting myelinogenesis in the medial prefrontal cortex. Cell Mol Life Sci 79(9):507. https://doi.org/10.1007/s00018-022-04533-6

    Article  CAS  PubMed  Google Scholar 

  112. Bacchelli E, Blasi F, Biondolillo M, Lamb JA, Bonora E, Barnby G et al (2003) Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Mol Psychiatry 8(11):916–924. https://doi.org/10.1038/sj.mp.4001340

    Article  CAS  PubMed  Google Scholar 

  113. Jin Y, Lee CG (2013) Single nucleotide polymorphisms associated with microRNA regulation. Biomolecules 3(2):287–302. https://doi.org/10.3390/biom3020287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang W, Wang X, Chen L, Zhang Y, Xu Z, Liu J et al (2016) The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity. Expert Rev Mol Med 18:e4. https://doi.org/10.1017/erm.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Roy B, Dunbar M, Shelton RC, Dwivedi Y (2017) Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacol 42(4):864–875. https://doi.org/10.1038/npp.2016.175

    Article  CAS  Google Scholar 

  116. Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K et al (2016) Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol Psychiat 80(11):815–826. https://doi.org/10.1016/j.biopsych.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  117. Gu ZW, Pan JY, Chen LP (2019) MiR-124 suppression in the prefrontal cortex reduces depression-like behavior in mice. Bioscience Rep 39(9) Artn Bsr20190186. https://doi.org/10.1042/Bsr20190186

  118. Yang W, Liu M, Zhang QW, Zhang JH, Chen J, Chen QY et al (2020) Knockdown of miR-124 reduces depression-like behavior by targeting CREB1 and BDNF. Curr Neurovasc Res 17(2):196–203. https://doi.org/10.2174/1567202617666200319141755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu K, Yin Y, Le Y, Ouyang W, Pan A, Huang J et al (2022) Age-related Loss of miR-124 causes cognitive deficits via derepressing RyR3 expression. Aging Dis 13(5):1455–1470. https://doi.org/10.14336/AD.2022.0204

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhou YJ, Deng JS, Chu XL, Zhao YW, Guo Y (2019) Role of post-transcriptional control of calpain by miR-124-3p in the development of Alzheimer’s disease. J Alzheimers Dis 67(2):571–581. https://doi.org/10.3233/Jad-181053

    Article  CAS  PubMed  Google Scholar 

  121. Angelopoulou E, Paudel YN, Piperi C (2019) miR-124 and Parkinson’s disease: a biomarker with therapeutic potential. Pharmacol Res 150:104515. https://doi.org/10.1016/j.phrs.2019.104515

    Article  CAS  PubMed  Google Scholar 

  122. Fang MR, Wang J, Zhang XB, Geng Y, Hu ZY, Rudd JA et al (2012) The miR-124 regulates the expression of BACE1/beta-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209(1):94–105. https://doi.org/10.1016/j.toxlet.2011.11.032

    Article  CAS  PubMed  Google Scholar 

  123. Hafez HA, Kamel MA, Osman MY, Osman HMY, Elblehi SS, Mahmoud SA (2021) Ameliorative effects of astaxanthin on brain tissues of Alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol Cell Biochem 476(5):2233–2249. https://doi.org/10.1007/s11010-021-04079-4

    Article  CAS  PubMed  Google Scholar 

  124. Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M (2021) An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 135:111198. https://doi.org/10.1016/j.biopha.2020.111198

    Article  CAS  PubMed  Google Scholar 

  125. Hehr U, Uyanik G, Aigner L, Couillard-Despres S, Winkler J (1993) DCX-related disorders. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, LJH B et al (eds) Gene reviews((R)). University of Washington, Seattle (WA) 1993–2019. https://www.ncbi.nlm.nih.gov/books/NBK1185

  126. Coley AA, Gao WJ (2018) PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry 82:187–194. https://doi.org/10.1016/j.pnpbp.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  127. Merikangas AK, Corvin AP, Gallagher L (2009) Copy-number variants in neurodevelopmental disorders: promises and challenges. Trends Genet 25(12):536–544. https://doi.org/10.1016/j.tig.2009.10.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82271198), the Joint Funds for the Innovation of Science and Technology of Fujian province (No.2018Y9068), the Natural Science Foundation of Guangdong province (2018A030313008), the Natural Science Foundation of Fujian Province (No. 2020J01598), and the funds of Fujian Medical University (XRCZX2019009).

Author information

Authors and Affiliations

Authors

Contributions

XG and XNX designed and wrote the manuscript. CHJ contributed to manuscript preparation and reviewing. JHW, JWZ, QG, and JWC help to check for language errors.

Corresponding author

Correspondence to Xi Gu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All the authors declared that they had participated in the writing of this review.

Consent for Publication

All the authors stated that they agreed to the publication of the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Xu, X., Jia, C. et al. Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 60, 3569–3583 (2023). https://doi.org/10.1007/s12035-023-03271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03271-5

Keywords

Navigation