Skip to main content
Log in

Melatonin Alleviates the Oxygen–Glucose Deprivation/Reperfusion-Induced Pyroptosis of HEI-OC1 Cells and Cochlear Hair Cells via MT-1,2/Nrf2 (NFE2L2)/ROS/NLRP3 Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Substantial evidence suggests that pyroptosis is involved in renal, cerebral, and myocardial ischemia–reperfusion injury. However, whether pyroptosis is involved in ischemia–reperfusion injury of cochlear hair cells has not been explored. In this study, we examined the effects of melatonin on the oxygen–glucose deprivation/reperfusion (OGD/R) of hair cell-like House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and cochlear hair cells in vitro to mimic cochlear ischemia–reperfusion injury in vivo. We found that melatonin treatment protected the HEI-OC1 and cochlear hair cells against OGD/R-induced cell pyroptosis and reduced the expression level of ROS in these cells. However, these effects were completely abolished by the application of luzindole (a non-selective melatonin receptor blocker) and largely offset by the use of ML385 (an nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor). These findings suggest that melatonin alleviates OGD/R-induced pyroptosis of the hair cell-like HEI-OC1 cells and cochlear hair cells via the melatonin receptor 1A (MT-1) and melatonin receptor 1B (MT-2)/Nrf2 (NFE2L2)/ROS/NLRP3 pathway, which may provide credible evidence for melatonin being used as a potential drug for the treatment of idiopathic sudden sensorineural hearing loss in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Stachler RJ, Chandrasekhar SS, Archer SM, Rosenfeld RM, Schwartz SR, Barrs DM et al (2012) Clinical practice guideline: sudden hearing loss. Otolaryngol Head Neck Surg 146(3 Suppl):S1-35. https://doi.org/10.1177/0194599812436449

    Article  Google Scholar 

  2. Kim JS, Lopez I, DiPatre PL, Liu F, Ishiyama A, Baloh RW (1999) Internal auditory artery infarction: clinicopathologic correlation. Neurology 52(1):40–44. https://doi.org/10.1212/wnl.52.1.40

    Article  CAS  Google Scholar 

  3. Chandrasekhar SS, Tsai DB, Schwartz SR, Bontempo LJ, Faucett EA, Finestone SA et al (2019) Clinical practice guideline: sudden hearing loss (update) executive summary. Otolaryngol Head Neck Surg 161(2):195–210. https://doi.org/10.1177/0194599819859883

    Article  Google Scholar 

  4. Liu L, Cao Q, Gao W, Li BY, Zeng C, Xia Z et al (2021) Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J 35(12):e22040. https://doi.org/10.1096/fj.202002718RR

    Article  CAS  Google Scholar 

  5. Zang M, Zhao Y, Gao L, Zhong F, Qin Z, Tong R et al (2020) The circadian nuclear receptor RORalpha negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. Biochim Biophys Acta Mol Basis Dis 1866(11):165890. https://doi.org/10.1016/j.bbadis.2020.165890

    Article  CAS  Google Scholar 

  6. Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D et al (2019) Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. LIFE SCI 239:117036. https://doi.org/10.1016/j.lfs.2019.117036

    Article  CAS  Google Scholar 

  7. Karaer I, Simsek G, Gul M, Bahar L, Gurocak S, Parlakpinar H et al (2015) Melatonin protects inner ear against radiation damage in rats. LARYNGOSCOPE 125(10):E345–E349. https://doi.org/10.1002/lary.25376

    Article  CAS  Google Scholar 

  8. Karlidag T, Yalcin S, Ozturk A, Ustundag B, Gok U, Kaygusuz I et al (2002) The role of free oxygen radicals in noise induced hearing loss: effects of melatonin and methylprednisolone. Auris Nasus Larynx 29(2):147–152. https://doi.org/10.1016/s0385-8146(01)00137-7

    Article  Google Scholar 

  9. Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. LARYNGOSCOPE 110(5 Pt 1):727–738. https://doi.org/10.1097/00005537-200005000-00003

    Article  CAS  Google Scholar 

  10. Lopez-Gonzalez MA, Guerrero JM, Torronteras R, Osuna C, Delgado F (2000) Ototoxicity caused by aminoglycosides is ameliorated by melatonin without interfering with the antibiotic capacity of the drugs. J PINEAL RES 28(1):26–33. https://doi.org/10.1034/j.1600-079x.2000.280104.x

    Article  CAS  Google Scholar 

  11. Lopez-Gonzalez MA, Guerrero JM, Rojas F, Delgado F (2000) Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. J PINEAL RES 28(2):73–80. https://doi.org/10.1034/j.1600-079x.2001.280202.x

    Article  CAS  Google Scholar 

  12. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116. https://doi.org/10.1038/nature18590

    Article  CAS  Google Scholar 

  13. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158. https://doi.org/10.1038/nature18629

    Article  CAS  Google Scholar 

  14. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  CAS  Google Scholar 

  15. Liu D, Dong Z, Xiang F, Liu H, Wang Y, Wang Q et al (2020) Dendrobium alkaloids promote neural function after cerebral ischemia–reperfusion injury through inhibiting pyroptosis induced neuronal death in both in vivo and in vitro models. Neurochem Res 45(2):437–454. https://doi.org/10.1007/s11064-019-02935-w

    Article  CAS  Google Scholar 

  16. An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X et al (2019) Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci 232:116599. https://doi.org/10.1016/j.lfs.2019.116599

    Article  CAS  Google Scholar 

  17. She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z et al (2019) Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 242:112051. https://doi.org/10.1016/j.jep.2019.112051

    Article  CAS  Google Scholar 

  18. Wang M, Dong Y, Gao S, Zhong Z, Cheng C, Qiang R et al. (2022) Hippo/YAP signaling pathway protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Mol Life Sci 79(2). https://doi.org/10.1007/s00018-021-04029-9.

  19. Fu X, Li P, Zhang L, Song Y, An Y, Zhang A et al. (2022) Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. Proceedings of the National Academy of Sciences 119(10). https://doi.org/10.1073/pnas.2107357119.

  20. Zhang Y, Fang Q, Wang H, Qi J, Sun S, Liao M et al. Increased mitophagy protects cochlear hair cells from aminoglycoside induced damage. Autophagy 2022:1–17. https://doi.org/10.1080/15548627.2022.2062872

  21. Zheng Y, Luo W, Ma R, Cong N, Ren D, Chi F et al (2020) The Atoh1 expression levels are correlated with the arrangement, ciliary morphology, and electrophysiological characteristics of ectopic hair cell-like cells. Neurosci Lett 720:134758. https://doi.org/10.1016/j.neulet.2020.134758

    Article  CAS  Google Scholar 

  22. Takumida M, Anniko M (2019) Localization of melatonin and its receptors (melatonin 1a and 1b receptors) in the mouse inner ear. Acta Otolaryngol 139(11):948–952. https://doi.org/10.1080/00016489.2019.1655587

    Article  CAS  Google Scholar 

  23. Miao ZY, Xia X, Che L, Song YT (2018) Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of Nrf2 expression in ovariectomized rats. Neurol Res 40(8):689–695. https://doi.org/10.1080/01616412.2018.1462879

    Article  CAS  Google Scholar 

  24. Zheng Z, Tang D, Zhao L, Li W, Han J, Hu B et al (2020) Liproxstatin-1 protects hair cell-like HEI-OC1 cells and cochlear hair cells against neomycin ototoxicity. Oxid Med Cell Longev 2020:1782659. https://doi.org/10.1155/2020/1782659

    Article  CAS  Google Scholar 

  25. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128. https://doi.org/10.1038/s41392-021-00507-5

    Article  Google Scholar 

  26. Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26(1):99–114. https://doi.org/10.1038/s41418-018-0212-6

    Article  Google Scholar 

  27. Lee H, Lee HJ, Jung JH, Shin EA, Kim SH (2018) Melatonin disturbs SUMOylation-mediated crosstalk between c-Myc and nestin via MT1 activation and promotes the sensitivity of paclitaxel in brain cancer stem cells. J Pineal Res 65(2):e12496. https://doi.org/10.1111/jpi.12496

    Article  CAS  Google Scholar 

  28. Onphachanh X, Lee HJ, Lim JR, Jung YH, Kim JS, Chae CW et al. (2017) Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: involvement of MT2 /Akt/NF-kappaB pathway. J Pineal Res 63(2). https://doi.org/10.1111/jpi.12427

  29. Ge H, Lin W, Lou Z, Chen R, Shi H, Zhao Q et al (2021) Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway. Microvasc Res 140:104302. https://doi.org/10.1016/j.mvr.2021.104302

    Article  CAS  Google Scholar 

  30. Xu G, Zhao X, Fu J, Wang X. (2019) Resveratrol increase myocardial Nrf2 expression in type 2 diabetic rats and alleviate myocardial ischemia/reperfusion injury (MIRI). Ann Palliat Med 8(5):565–75. https://doi.org/10.21037/apm.2019.11.25.

  31. Zou Y, Luo X, Feng Y, Fang S, Tian J, Yu B et al (2021) Luteolin prevents THP-1 macrophage pyroptosis by suppressing ROS production via Nrf2 activation. Chem Biol Interact 345:109573. https://doi.org/10.1016/j.cbi.2021.109573

    Article  CAS  Google Scholar 

  32. Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY (2019) Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res 2019:8151836. https://doi.org/10.1155/2019/8151836

    Article  CAS  Google Scholar 

  33. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V et al (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016:2183026. https://doi.org/10.1155/2016/2183026

    Article  CAS  Google Scholar 

  34. Wang X, Bian Y, Zhang R, Liu X, Ni L, Ma B et al (2019) Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting ROS/NLRP3 axis. Biochem Biophys Res Commun 519(2):402–408. https://doi.org/10.1016/j.bbrc.2019.09.005

    Article  CAS  Google Scholar 

  35. Chen Z, Zhong H, Wei J, Lin S, Zong Z, Gong F et al (2019) Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther 21(1):300. https://doi.org/10.1186/s13075-019-2085-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81970889 to FL.C) and the Science and Technology Committee of Shanghai (grant number 22S31903100 to FL.C).

Author information

Authors and Affiliations

Authors

Contributions

FLC, ZG, and NC contributed to conception and design of the study. YZ, NG, WXZ, and RM performed the experiments. YZ, NG, and WXZ wrote the manuscript. FLC, ZG, and NC reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Fanglu Chi, Zhen Gao or Ning Cong.

Ethics declarations

Ethics Approval

All animal experiments were performed in line with the principles of the Institutional Animal Care and Use Committee of the Eye & ENT Hospital of Fudan University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Gao, N., Zhang, W. et al. Melatonin Alleviates the Oxygen–Glucose Deprivation/Reperfusion-Induced Pyroptosis of HEI-OC1 Cells and Cochlear Hair Cells via MT-1,2/Nrf2 (NFE2L2)/ROS/NLRP3 Pathway. Mol Neurobiol 60, 629–642 (2023). https://doi.org/10.1007/s12035-022-03077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03077-x

Keywords

Navigation