Skip to main content

Advertisement

Log in

Senegenin Rescues PC12 Cells with Oxidative Damage Through Inhibition of Ferroptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress is one of the pathological mechanisms of Alzheimer’s disease (AD), and ferroptosis has been determined to be involved in neurodegenerative diseases such as AD. Senegenin (Sen) prevents oxidative damage in nerve cells via a mechanism that may be highly related to ferroptosis. However, the mechanism of ferroptosis pathway involvement in AD is unclear. In this study, we established a model of PC12 cytotoxic injury induced by Aβ25–35, and we detected the level of oxidative damage, MMP, and ferroptosis-related protein expression. The results showed that, compared with control group, the level of ROS increased, GPX activities decreased, and MDA levels increased in Aβ25–35 group. Aβ25–35 could induce mitochondrial depolarization in PC12 cells and Fer-1 could not reverse this damage. WB revealed that Aβ25–35 group had increased ACSL4 and PEBP1 proteins, and decreased GPX4 protein. After adding Sen in the model, the level of oxidative damage was reduced, and mitochondrial depolarization was reversed compared with Aβ25–35 group. WB suggested that the expression of ACSL4 and PEBP1 proteins decreased, and the expression of GPX4 protein increased by Sen treatment. In conclusion, we found that Sen exhibits strong neuroprotective activity against Aβ25–35 induced oxidative damage and lipid metabolic associated with ferroptosis. Inhibiting nerve cell ferroptosis might facilitate the future development of strategies to AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. The Lancet 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  Google Scholar 

  2. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2017) Dementia prevention, intervention, and care. The Lancet 390(10113):2673–2734. https://doi.org/10.1016/s0140-6736(17)31363-6

    Article  Google Scholar 

  3. Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P, Xiong Y (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell death discovery 7(1):193. https://doi.org/10.1038/s41420-021-00579-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14(2):45–53. https://doi.org/10.1016/j.molmed.2007.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi RH, Nagao T, Gouras GK (2017) Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int 67(4):185–193. https://doi.org/10.1111/pin.12520

    Article  CAS  PubMed  Google Scholar 

  6. Currais A, Quehenberger O, Armando AM, Daugherty D, Maher P, Schubert D (2016) Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. NPJ Aging Mech Dis 2:16012. https://doi.org/10.1038/npjamd.2016.12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J (2019) Ferroptosis and its role in diverse brain diseases. Mol Neurobiol 56(7):4880–4893. https://doi.org/10.1007/s12035-018-1403-3

    Article  CAS  PubMed  Google Scholar 

  9. Stockwell BR, FriedmannAngeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Praticò D, Sung S (2004) Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer’s disease. J Alzheimer’s Dis 6(2):171–175. https://doi.org/10.3233/jad-2004-6209

    Article  Google Scholar 

  11. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biol Med 32(11):1050–1060. https://doi.org/10.1016/s0891-5849(02)00794-3

    Article  CAS  Google Scholar 

  12. Deng X, Zhao S, Liu X, Han L, Wang R, Hao H, Jiao Y, Han S, Bai C (2020) Polygala tenuifolia: a source for anti-Alzheimer’s disease drugs. Pharm Biol 58(1):410–416. https://doi.org/10.1080/13880209.2020.1758732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jesky R, Chen H (2016) The neuritogenic and neuroprotective potential of senegenin against Aβ-induced neurotoxicity in PC 12 cells. BMC Complement Altern Med 16:26. https://doi.org/10.1186/s12906-016-1006-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren X, Zhang J, Zhao Y, Sun L (2022) Senegenin inhibits Aβ1-42-induced PC12 cells apoptosis and oxidative stress via activation of the PI3K/Akt signaling pathway. Neuropsychiatr Dis Treat 18:513–524. https://doi.org/10.2147/NDT.S346238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu X-q, Li X-m, Zhao Y-d, Ji X-l, Wang Y-p, Fu Y-m, Wang H-d, Lu D-x, Qi R-b (2016) Effects of Senegenin against hypoxia/reoxygenation-induced injury in PC12 cells. Chin J Integr Med 22(5):353–361. https://doi.org/10.1007/s11655-015-2091-8

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Zhao Y, Liu P, Zhu X, Chen M, Wang H, Lu D, Qi R (2014) Senegenin inhibits hypoxia/reoxygenation-induced neuronal apoptosis by upregulating RhoGDIα. Mol Neurobiol 52(3):1561–1571. https://doi.org/10.1007/s12035-014-8948-6

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Lu F, Liu P, Qiu Z, Li J, Wang X, Xu H, Zhao Y, Li X, Wang H, Lu D, Qi R (2022) A direct interaction between RhoGDIα/Tau alleviates hyperphosphorylation of Tau in Alzheimer’s disease and vascular dementia. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-021-10049-w

    Article  PubMed  Google Scholar 

  18. Yoo MH, Gu X, Xu XM, Kim JY, Carlson BA, Patterson AD, Cai H, Gladyshev VN, Hatfield DL (2010) Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer’s disease. Antioxid Redox Signal 12(7):819–827. https://doi.org/10.1089/ars.2009.2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354–363. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  21. Park H, Kang S, Nam E, Suh YH, Chang KA (2019) The protective effects of PSM-04 against beta amyloid-induced neurotoxicity in primary cortical neurons and an animal model of Alzheimer’s disease. Front Pharmacol 10:2. https://doi.org/10.3389/fphar.2019.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheong MH, Lee SR, Yoo HS, Jeong JW, Kim GY, Kim WJ, Jung IC, Choi YH (2011) Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-κB activation in lipopolysaccharide-induced BV2 microglial cells. J Ethnopharmacol 137(3):1402–1408. https://doi.org/10.1016/j.jep.2011.08.008

    Article  PubMed  Google Scholar 

  23. Deng X, Zhao S, Liu X, Han L, Wang R, Hao H, Jiao Y, Han S, Bai C (2020) Polygala tenuifolia: a source for anti-Alzheimer’s disease drugs. Pharm Biol 58(1):410–416. https://doi.org/10.1080/13880209.2020.1758732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X (2007) Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 32(10):1640–1645. https://doi.org/10.1007/s11064-007-9360-7

    Article  CAS  PubMed  Google Scholar 

  25. Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8(11–12):1997–2006. https://doi.org/10.1089/ars.2006.8.1997

    Article  CAS  PubMed  Google Scholar 

  26. Butterfield DA (2020) Brain lipid peroxidation and Alzheimer disease: synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 64:101049. https://doi.org/10.1016/j.arr.2020.101049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sengupta U, Nilson A, Kayed RJE (2016) The role of amyloid -β oligomers in toxicity, propagation, and immunotherapy. 6:42–49. https://doi.org/10.1016/j.ebiom.2016.03.035

  28. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354-363.e353. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  30. Grevengoed TJ, Klett EL, Coleman RA (2014) Acyl-CoA metabolism and partitioning. Annu Rev Nutr 34:1–30. https://doi.org/10.1146/annurev-nutr-071813-105541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan H, Li X, Zhang X, Kang R, Tang D (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478(3):1338–1343. https://doi.org/10.1016/j.bbrc.2016.08.124

    Article  CAS  PubMed  Google Scholar 

  32. Chen L, Hambright WS, Na R, Ran Q (2015) Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 290(47):28097–28106. https://doi.org/10.1074/jbc.M115.680090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17. https://doi.org/10.1016/j.redox.2017.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K, Shrivastava IH, Kenny EM, Yang Q, Rosenbaum JC, Sparvero LJ, Emlet DR, Wen X, Minami Y, Qu F, Watkins SC, Holman TR, VanDemark AP, Kellum JA, Bahar I, Bayır H, Kagan VE (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628-641.e26. https://doi.org/10.1016/j.cell.2017.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants of the present study as well as all the members of staff of the Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine.

Funding

This work was supported by the Natural Science Foundation of Guangdong province (No. 2014A030313394), the Project of Science and Technology of Guangzhou (2014J4100098), the Fundamental Research Funds for the Central Universities in China (No. 21613401), and the Project of Science and Technology Plan in Guangzhou: City-University (Hospital) joint funding (202201020016).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Heping Zhang, Wei Zhou, Jianling Li, and Zhaohui Qiu. The first draft of the manuscript was written by Heping Zhang, and all the authors commented on the previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Renbin Qi.

Ethics declarations

Ethics Approval

Not applicable to this study.

Consent to Participate

Not applicable to this study.

Consent for Publication

Not applicable to this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1561 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, W., Li, J. et al. Senegenin Rescues PC12 Cells with Oxidative Damage Through Inhibition of Ferroptosis. Mol Neurobiol 59, 6983–6992 (2022). https://doi.org/10.1007/s12035-022-03014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03014-y

Keywords

Navigation