Skip to main content

Advertisement

Log in

Dysregulated miRNAs in Progression and Pathogenesis of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive degeneration of neurons due to the accumulation of amyloid-β peptide (Aβ) and hyper-phosphorylation of tau protein in the neuronal milieu leading to increased oxidative stress and apoptosis. Numerous factors contribute towards the progression of AD, including miRNA, which are 22–24 nucleotides long sequence which acts as critical regulators of cellular processes by binding to 3′ UTR of mRNA, regulating its expression post-transcriptionally. This review aims to determine the miRNA with the most significant dysregulation in the brain and cerebrospinal fluid (CSF) of human patients. A systemized inclusion/exclusion criterion has been utilized based on selected keywords followed by screening of those articles to conclude a list of 8 highly dysregulated miRNAs based on the fold change of AD vs control patients, which could be used in clinical testing as these miRNAs play central role in the pathophysiology of AD. Furthermore, a network study of highly dysregulated miRNA estimated the association of these miRNA in the mediation of Aβ generation and aggregation, inhibition of autophagy, reduction of Aβ clearance, microglial and astrocytic activation, neuro-inflammation, tau hyper-phosphorylation, and synaptic loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.  5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Karlawish J, Jack CR Jr, Rocca WA, Snyder HM, Carrillo MC (2017) Alzheimer’s disease: The next frontier-Special Report 2017. Alzheimer’s Dement : J Alzheimer’s Assoc 13(4):374–380. https://doi.org/10.1016/j.jalz.2017.02.006

    Article  Google Scholar 

  2. 2021 Alzheimer’s disease facts and figures (2021). Alzheimer’s Dement : J Alzheimer’s Assoc 17 (3):327–406 https://doi.org/10.1002/alz.12328

  3. Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM (2019) Synaptic elimination in neurological disorders. Curr Neuropharmacol 17(11):1071–1095. https://doi.org/10.2174/1570159X17666190603170511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O (2020) Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain : J Neurol 143(4):1233–1248. https://doi.org/10.1093/brain/awaa068

    Article  Google Scholar 

  5. Cutsuridis V, Yoshida M (2017) Editorial: memory processes in medial temporal lobe: experimental, theoretical and computational approaches. Front Syst Neurosci 11:19. https://doi.org/10.3389/fnsys.2017.00019

    Article  PubMed  PubMed Central  Google Scholar 

  6. Skaper SD, Facci L, Zusso M, Giusti P (2017) Synaptic Plasticity, dementia and alzheimer disease. CNS Neurol Disord: Drug Targets 16(3):220–233. https://doi.org/10.2174/1871527316666170113120853

    Article  CAS  Google Scholar 

  7. Metaxas A, Kempf SJ (2016) Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res 11(10):1579–1581. https://doi.org/10.4103/1673-5374.193234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed 14:5541–5554. https://doi.org/10.2147/IJN.S200490

    Article  CAS  Google Scholar 

  9. Zhang H, Ma Q, Zhang YW, Xu H (2012) Proteolytic processing of Alzheimer’s beta-amyloid precursor protein. J Neurochem 120(Suppl 1):9–21. https://doi.org/10.1111/j.1471-4159.2011.07519.x

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303. https://doi.org/10.1016/j.neuron.2009.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/S0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  12. Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S (2021) Multifaceted Alzheimer’s disease: building a roadmap for advancement of novel therapies. Neurochem Res 46(11):2832–2851. https://doi.org/10.1007/s11064-021-03415-w

    Article  CAS  PubMed  Google Scholar 

  13. Arab L, Sabbagh MN (2010) Are certain lifestyle habits associated with lower Alzheimer’s disease risk? J Alzheimer’s Dis : JAD 20(3):785–794. https://doi.org/10.3233/JAD-2010-091573

    Article  PubMed  Google Scholar 

  14. Killin LO, Starr JM, Shiue IJ, Russ TC (2016) Environmental risk factors for dementia: a systematic review. BMC Geriatr 16(1):175. https://doi.org/10.1186/s12877-016-0342-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y, Li H (2020) MicroRNAs in Alzheimer’s Disease: function and potential applications as diagnostic biomarkers. Front Mol Neurosci 13:160. https://doi.org/10.3389/fnmol.2020.00160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J (2019) MicroRNAs in Alzheimer’s Disease: diagnostic markers or therapeutic agents? Front Pharmacol 10:665. https://doi.org/10.3389/fphar.2019.00665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  18. Catalanotto C, Cogoni C, ZardSo G (2016) MicroRNA in Control of gene expression: an overview of nuclear functions. Int J Mol Sci 17 (10) https://doi.org/10.3390/ijms17101712

  19. Rabbito A, Dulewicz M, Kulczynska-Przybik A, Mroczko B (2020) Biochemical markers in Alzheimer’s disease. Int J Mol Sci 21 (6) https://doi.org/10.3390/ijms21061989

  20. Chang L, Zhou G, Soufan O, Xia J (2020) miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 48(W1):W244–W251. https://doi.org/10.1093/nar/gkaa467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Liao Y, Tang L (2019) MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res : CR 38(1):53. https://doi.org/10.1186/s13046-019-1059-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, Simpkins JW (2016) Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139–151. https://doi.org/10.1016/j.brainres.2016.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mao S, Sun Q, Xiao H, Zhang C, Li L (2015) Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2. Protein Cell 6(7):529–540. https://doi.org/10.1007/s13238-015-0168-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saba R, Gushue S, Huzarewich RL, Manguiat K, Medina S, Robertson C, Booth SA (2012) MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS ONE 7(2):e30832. https://doi.org/10.1371/journal.pone.0030832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkar S, Engler-Chiurazzi EB, Cavendish JZ, Povroznik JM, Russell AE, Quintana DD, Mathers PH, Simpkins JW (2019) Over-expression of miR-34a induces rapid cognitive impairment and Alzheimer’s disease-like pathology. Brain Res 1721:146327. https://doi.org/10.1016/j.brainres.2019.146327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doridot L, Houry D, Gaillard H, Chelbi ST, Barbaux S, Vaiman D (2014) miR-34a expression, epigenetic regulation, and function in human placental diseases. Epigenetics 9(1):142–151. https://doi.org/10.4161/epi.26196

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw WJ (2013) Regulation of TREM2 expression by an NF-small ka, CyrillicB-sensitive miRNA-34a. NeuroReport 24(6):318–323. https://doi.org/10.1097/WNR.0b013e32835fb6b0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee HR, Shin HK, Park SY, Kim HY, Lee WS, Rhim BY, Hong KW, Kim CD (2014) Cilostazol suppresses beta-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-beta. J Neurosci Res 92(11):1581–1590. https://doi.org/10.1002/jnr.23421

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM (2010) The role of Sirt1: At the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1804(8):1690–1694. https://doi.org/10.1016/j.bbapap.2009.11.015

  30. Wong SY, Tang BL (2016) SIRT1 as a therapeutic target for Alzheimer’s disease. Rev Neurosci 27(8):813–825. https://doi.org/10.1515/revneuro-2016-0023

    Article  CAS  PubMed  Google Scholar 

  31. Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA (2022) Resveratrol-Selenium Nanoparticles Alleviate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression. https://doi.org/10.1007/s12011-021-03073-7

  32. Gasmi A, Noor S, Menzel A, Doşa A, Pivina L, Bjørklund G (2021) Obesity and insulin resistance: associations with chronic inflammation, genetic and epigenetic factors. Curr Med Chem 28(4):800–826. https://doi.org/10.2174/0929867327666200824112056

    Article  CAS  PubMed  Google Scholar 

  33. Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, Lakhani HV, Sodhi K (2021) A Review of miRNAs as biomarkers and effect of dietary modulation in obesity associated cognitive decline and neurodegenerative disorders. Front Mol Neurosci 14:756499–756499. https://doi.org/10.3389/fnmol.2021.756499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T (2014) miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5(6):711–718. https://doi.org/10.1007/s12975-014-0364-8

    Article  CAS  PubMed  Google Scholar 

  35. Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA (2012) Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 8(11):e1003002. https://doi.org/10.1371/journal.ppat.1003002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel CP, Glatzel M, De Strooper B, Saftig P (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci : J Soc Neurosci 30(14):4833–4844. https://doi.org/10.1523/JNEUROSCI.5221-09.2010

    Article  CAS  Google Scholar 

  37. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Investig 113(10):1456–1464. https://doi.org/10.1172/JCI20864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akhter R, Shao Y, Shaw M, Formica S, Khrestian M, Leverenz JB, Bekris LM (2018) Regulation of ADAM10 by miR-140-5p and potential relevance for Alzheimer’s disease. Neurobiol Aging 63:110–119. https://doi.org/10.1016/j.neurobiolaging.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Yuan XZ, Sun S, Tan CC, Yu JT, Tan L (2017) The role of ADAM10 in Alzheimer’s disease. J Alzheimer’s Dis: JAD 58(2):303–322. https://doi.org/10.3233/jad-170061

    Article  PubMed  Google Scholar 

  40. Wang LL, Min L, Guo QD, Zhang JX, Jiang HL, Shao S, Xing JG, Yin LL, Liu JH, Liu R, Guo SL (2017) Profiling microRNA from brain by microarray in a transgenic mouse model of Alzheimer’s disease. Biomed Res Int 2017:8030369. https://doi.org/10.1155/2017/8030369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fu H, Possenti A, Freer R, Nakano Y, Hernandez Villegas NC, Tang M, Cauhy PVM, Lassus BA, Chen S, Fowler SL, Figueroa HY, Huey ED, Johnson GVW, Vendruscolo M, Duff KE (2019) A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat Neurosci 22(1):47–56. https://doi.org/10.1038/s41593-018-0298-7

    Article  CAS  PubMed  Google Scholar 

  42. Mei Y, Yuan Z, Song B, Li D, Ma C, Hu C, Ching YP, Li M (2008) Activating transcription factor 3 up-regulated by c-Jun NH(2)-terminal kinase/c-Jun contributes to apoptosis induced by potassium deprivation in cerebellar granule neurons. Neuroscience 151(3):771–779. https://doi.org/10.1016/j.neuroscience.2007.10.057

    Article  CAS  PubMed  Google Scholar 

  43. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer’s Dis: JAD 14(1):27–41. https://doi.org/10.3233/jad-2008-14103

    Article  CAS  PubMed  Google Scholar 

  44. Hojati Zohreh, Omidi Farzaneh, Dehbashi Moein, Mohammad Soltani Bahram (2021) The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating hsa-miR-494-3p and hsa-miR-661 in Alzheimer’s Disease. Iran Biomed J 25(1):62–67. https://doi.org/10.29252/ibj.25.1.62

  45. Wang X, Tan L, Lu Y, Peng J, Zhu Y, Zhang Y, Sun Z (2015) MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha. FEBS Lett 589(6):726–729. https://doi.org/10.1016/j.febslet.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  46. Miao J, Jing J, Shao Y, Sun H (2020) MicroRNA-138 promotes neuroblastoma SH-SY5Y cell apoptosis by directly targeting DEK in Alzheimer’s disease cell model. BMC Neurosci 21(1):33. https://doi.org/10.1186/s12868-020-00579-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Greene AN, Parks LG, Solomon MB, Privette Vinnedge LM (2020) Loss of DEK expression induces Alzheimer’s disease phenotypes in differentiated SH-SY5Y Cells. Front Mol Neurosci 13:594319. https://doi.org/10.3389/fnmol.2020.594319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boscher E, Husson T, Quenez O, Laquerriere A, Marguet F, Cassinari K, Wallon D, Martinaud O, Charbonnier C, Nicolas G, Deleuze JF, Boland A, Lathrop M, Frebourg T, Consortium F, Campion D, Hebert SS, Rovelet-Lecrux A (2019) Copy Number variants in miR-138 as a Potential risk factor for early-onset Alzheimer’s disease. J Alzheimer’s Dis: JAD 68 (3):1243-1255 https://doi.org/10.3233/JAD-180940

  49. Meng F, Zhang Y, Li X, Wang J, Wang Z (2017) Clinical significance of miR-138 in patients with malignant melanoma through targeting of PDK1 in the PI3K/AKT autophagy signaling pathway. Oncol Rep 38(3):1655–1662. https://doi.org/10.3892/or.2017.5838

    Article  CAS  PubMed  Google Scholar 

  50. Yeh M, Wang Y-Y, Yoo JY, Oh C, Otani Y, Kang JM, Park ES, Kim E, Chung S, Jeon Y-J, Calin GA, Kaur B, Zhao Z, Lee TJ (2021) MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Sci Rep 11(1):9219. https://doi.org/10.1038/s41598-021-88615-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng S, Wei S, Wang X, Xu Y, Xiao Y, Liu H, Jia J, Cheng J (2015) Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia. Exp Neurol 272:160–169. https://doi.org/10.1016/j.expneurol.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  52. Wang C, Xu T, Lachance BB, Zhong X, Shen G, Xu T, Tang C, Jia X (2021) Critical roles of sphingosine kinase 1 in the regulation of neuroinflammation and neuronal injury after spinal cord injury. J Neuroinflammation 18(1):50. https://doi.org/10.1186/s12974-021-02092-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Geng L, Zhang T, Liu W, Chen Y (2018) miR-494-3p modulates the progression of in vitro and in vivo Parkinson’s disease models by targeting SIRT3. Neurosci Lett 675:23–30. https://doi.org/10.1016/j.neulet.2018.03.037

    Article  CAS  PubMed  Google Scholar 

  54. Lee J, Kim Y, Liu T, Hwang YJ, Hyeon SJ, Im H, Lee K, Alvarez VE, McKee AC, Um SJ, Hur M, Mook-Jung I, Kowall NW, Ryu H (2018) SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 17(1):e12679. https://doi.org/10.1111/acel.12679

    Article  CAS  Google Scholar 

  55. Teixeira AL, Gomes M, Medeiros R (2012) EGFR signaling pathway and related-miRNAs in age-related diseases: the example of miR-221 and miR-222. Front Genet 3:286. https://doi.org/10.3389/fgene.2012.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guedes JR, Santana I, Cunha C, Duro D, Almeida MR, Cardoso AM, de Lima MC, Cardoso AL (2016) MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer’s disease. Alzheimer’s Dement 3:7–17. https://doi.org/10.1016/j.dadm.2015.11.004

    Article  Google Scholar 

  57. Zhang H, Feng Z, Huang R, Xia Z, Xiang G, Zhang J (2014) MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1. Int J Oncol 45(5):2143–2152. https://doi.org/10.3892/ijo.2014.2596

    Article  CAS  PubMed  Google Scholar 

  58. Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y, Yuan W, Fan C (2017) Advances in roles of miR-132 in the nervous system. Front Pharmacol 8:770–770. https://doi.org/10.3389/fphar.2017.00770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cătană C-S, Crişan C-A, Opre D, Berindan-Neagoe I (2020) Diagnostic and prognostic value of microRNAs for Alzheimer’s disease: a comprehensive meta-analysis. Med Pharm Rep 93(1):53–61. https://doi.org/10.15386/mpr-1393

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pichler S, Gu W, Hartl D, Gasparoni G, Leidinger P, Keller A, Meese E, Mayhaus M, Hampel H, Riemenschneider M (2017) The miRNome of Alzheimer’s disease: consistent downregulation of the miR-132/212 cluster. Neurobiol Aging 50(167):e161-167e110. https://doi.org/10.1016/j.neurobiolaging.2016.09.019

    Article  CAS  Google Scholar 

  61. Catapano F, Zaharieva I, Scoto M, Marrosu E, Morgan J, Muntoni F, Zhou H (2016) Altered Levels of MicroRNA-9, -206, and -132 in spinal muscular atrophy and their response to antisense oligonucleotide therapy. Mol Therapy Nucleic Acids 5(7):e331. https://doi.org/10.1038/mtna.2016.47

    Article  CAS  PubMed  Google Scholar 

  62. Freischmidt A, Muller K, Ludolph AC, Weishaupt JH (2013) Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 1:42. https://doi.org/10.1186/2051-5960-1-42

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hebert SS, Wang WX, Zhu Q, Nelson PT (2013) A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer’s disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. J Alzheimer’s Dis: JAD 35(2):335–348. https://doi.org/10.3233/JAD-122350

    Article  CAS  PubMed  Google Scholar 

  64. Johnson R, Buckley NJ (2009) Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. NeuroMol Med 11(3):183–199. https://doi.org/10.1007/s12017-009-8063-4

    Article  CAS  Google Scholar 

  65. Gillardon F, Mack M, Rist W, Schnack C, Lenter M, Hildebrandt T, Hengerer B (2008) MicroRNA and proteome expression profiling in early-symptomatic alpha-synuclein(A30P)-transgenic mice. Proteomics Clin Appl 2(5):697–705. https://doi.org/10.1002/prca.200780025

    Article  CAS  PubMed  Google Scholar 

  66. Salta E, Sierksma A, Vanden Eynden E, De Strooper B (2016) miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol Med 8(9):1005–1018. https://doi.org/10.15252/emmm.201606520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, Papadopoulou AS, Achsel T, Ayoubi T, Soreq H, Verhaagen J, Swaab DF, Aerts S, De Strooper B (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5(10):1613–1634. https://doi.org/10.1002/emmm.201201974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salta E, De Strooper B (2017) microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB Journal: Offi Pub Fed American Soc Exp Biol 31(2):424–433. https://doi.org/10.1096/fj.201601308

    Article  CAS  Google Scholar 

  69. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102(45):16426–16431. https://doi.org/10.1073/pnas.0508448102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang M, Bian Z (2021) Alzheimer’s Disease and microRNA-132: A widespread pathological factor and potential therapeutic target. Frontiers in Neuroscience 15 https://doi.org/10.3389/fnins.2021.687973

  71. Schneider R, McKeever P, Kim T, Graff C, van Swieten JC, Karydas A, Boxer A, Rosen H, Miller BL, Laforce R Jr, Galimberti D, Masellis M, Borroni B, Zhang Z, Zinman L, Rohrer JD, Tartaglia MC, Robertson J, Genetic FTDI (2018) Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study. J Neurol Neurosurg Psychiatry 89(8):851–858. https://doi.org/10.1136/jnnp-2017-317492

    Article  PubMed  Google Scholar 

  72. Gamez-Valero A, Campdelacreu J, Vilas D, Ispierto L, Rene R, Alvarez R, Armengol MP, Borras FE, Beyer K (2019) Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies. Transl Neurodegener 8:31. https://doi.org/10.1186/s40035-019-0169-5

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koopaei NN, Chowdhury EA, Jiang J, Noorani B, da Silva L, Bulut G, Hakimjavadi H, Chamala S, Bickel U, Schmittgen TD (2021) Enrichment of the erythrocyte miR-451a in brain extracellular vesicles following impairment of the blood-brain barrier. Neurosci Lett 751:135829. https://doi.org/10.1016/j.neulet.2021.135829

    Article  CAS  PubMed  Google Scholar 

  74. Zhang K, Bao R, Huang F, Yang K, Ding Y, Lauterboeck L, Yoshida M, Long Q, Yang Q (2021) ATP synthase inhibitory factor subunit 1 regulates islet beta-cell function via repression of mitochondrial homeostasis. Lab Investig: J Tech Methods Pathol https://doi.org/10.1038/s41374-021-00670-x

  75. Mohammed CP, Rhee H, Phee BK, Kim K, Kim HJ, Lee H, Park JH, Jung JH, Kim JY, Kim HC, Park SK, Nam HG, Kim K (2016) miR-204 downregulates EphB2 in aging mouse hippocampal neurons. Aging Cell 15(2):380–388. https://doi.org/10.1111/acel.12444

    Article  CAS  PubMed  Google Scholar 

  76. Zhang L, Fang Y, Zhao X, Zheng Y, Ma Y, Li S, Huang Z, Li L (2021) miR-204 silencing reduces mitochondrial autophagy and ROS production in a murine AD model via the TRPML1-activated STAT3 pathway. Mol Therapy Nucleic Acids 24:822–831. https://doi.org/10.1016/j.omtn.2021.02.010

    Article  CAS  Google Scholar 

  77. Zhu X, Yu L, Tao W, Jin J, Xu Y (2019) O3–01–05: MIR-204 attenuates memory deficits in a mouse model of Alzheimer’s disease. Alzheimer’s Dement 15(7s_Part_17):P876–P877. https://doi.org/10.1016/j.jalz.2019.06.4628

    Article  Google Scholar 

  78. Moncini S, Salvi A, Zuccotti P, Viero G, Quattrone A, Barlati S, De Petro G, Venturin M, Riva P (2011) The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS ONE 6(5):e20038. https://doi.org/10.1371/journal.pone.0020038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schmidt MF (2014) Drug target miRNAs: chances and challenges. Trends Biotechnol 32(11):578–585. https://doi.org/10.1016/j.tibtech.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  80. Walgrave H, Zhou L, De Strooper B, Salta E (2021) The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives. Mol Neurodegener 16(1):76. https://doi.org/10.1186/s13024-021-00496-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley interdisciplinary reviews RNA 5(5):697–712. https://doi.org/10.1002/wrna.1240

    Article  CAS  PubMed  Google Scholar 

  82. De Sousa RAL, Improta-Caria AC (2022) Regulation of microRNAs in Alzheimer´s disease, type 2 diabetes, and aerobic exercise training. Metab Brain Dis 37(3):559–580. https://doi.org/10.1007/s11011-022-00903-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TA is grateful to CSIR for the JRF to carry out this work. RS is also thankful to CSIR for the JRF to carry out this work. VP is thankful to SERB, DST, for the Junior and Senior Research Fellowship.

Funding

Dr. Jyoti Parkash is thankful to the UGC for the UGC startup grant (F.30–312/2016 (BSR)) and Science and Engineering Research Board or SERB (Early Carrier Research Grant, and Core Research Grant (CRG/2020/003257, CRG/2015/000240), Department of Science and Technology, New Delhi, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

The data collection and sorting has been done by TA and TSB; final editing has been done by VP, RA, and AS; TSB, HC, and JP helped in proof reading.

Corresponding author

Correspondence to Jyoti Parkash.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

I, Dr. Jyoti Parkash, give my consent for the publication of Dysregulated miRNAs in progression and pathogenesis of Alzheimer’s disease to be published in your prestige journal Molecular Neurobiology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, T., Prashar, V., Singh, R. et al. Dysregulated miRNAs in Progression and Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 59, 6107–6124 (2022). https://doi.org/10.1007/s12035-022-02950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02950-z

Keywords

Navigation